627 resultados para Car following models
Resumo:
Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.
Resumo:
With the increasing number of XML documents in varied domains, it has become essential to identify ways of finding interesting information from these documents. Data mining techniques were used to derive this interesting information. Mining on XML documents is impacted by its model due to the semi-structured nature of these documents. Hence, in this chapter we present an overview of the various models of XML documents, how these models were used for mining and some of the issues and challenges in these models. In addition, this chapter also provides some insights into the future models of XML documents for effectively capturing the two important features namely structure and content of XML documents for mining.
Resumo:
Existing recommendation systems often recommend products to users by capturing the item-to-item and user-to-user similarity measures. These types of recommendation systems become inefficient in people-to-people networks for people to people recommendation that require two way relationship. Also, existing recommendation methods use traditional two dimensional models to find inter relationships between alike users and items. It is not efficient enough to model the people-to-people network with two-dimensional models as the latent correlations between the people and their attributes are not utilized. In this paper, we propose a novel tensor decomposition-based recommendation method for recommending people-to-people based on users profiles and their interactions. The people-to-people network data is multi-dimensional data which when modeled using vector based methods tend to result in information loss as they capture either the interactions or the attributes of the users but not both the information. This paper utilizes tensor models that have the ability to correlate and find latent relationships between similar users based on both information, user interactions and user attributes, in order to generate recommendations. Empirical analysis is conducted on a real-life online dating dataset. As demonstrated in results, the use of tensor modeling and decomposition has enabled the identification of latent correlations between people based on their attributes and interactions in the network and quality recommendations have been derived using the 'alike' users concept.
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
The quality of conceptual business process models is highly relevant for the design of corresponding information systems. In particular, a precise measurement of model characteristics can be beneficial from a business perspective, helping to save costs thanks to early error detection. This is just as true from a software engineering point of view. In this latter case, models facilitate stakeholder communication and software system design. Research has investigated several proposals as regards measures for business process models, from a rather correlational perspective. This is helpful for understanding, for example size and complexity as general driving forces of error probability. Yet, design decisions usually have to build on thresholds, which can reliably indicate that a certain counter-action has to be taken. This cannot be achieved only by providing measures; it requires a systematic identification of effective and meaningful thresholds. In this paper, we derive thresholds for a set of structural measures for predicting errors in conceptual process models. To this end, we use a collection of 2,000 business process models from practice as a means of determining thresholds, applying an adaptation of the ROC curves method. Furthermore, an extensive validation of the derived thresholds was conducted by using 429 EPC models from an Australian financial institution. Finally, significant thresholds were adapted to refine existing modeling guidelines in a quantitative way.
Resumo:
Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
Many modern business environments employ software to automate the delivery of workflows; whereas, workflow design and generation remains a laborious technical task for domain specialists. Several differ- ent approaches have been proposed for deriving workflow models. Some approaches rely on process data mining approaches, whereas others have proposed derivations of workflow models from operational struc- tures, domain specific knowledge or workflow model compositions from knowledge-bases. Many approaches draw on principles from automatic planning, but conceptual in context and lack mathematical justification. In this paper we present a mathematical framework for deducing tasks in workflow models from plans in mechanistic or strongly controlled work environments, with a focus around automatic plan generations. In addition, we prove an associative composition operator that permits crisp hierarchical task compositions for workflow models through a set of mathematical deduction rules. The result is a logical framework that can be used to prove tasks in workflow hierarchies from operational information about work processes and machine configurations in controlled or mechanistic work environments.
Resumo:
Nowadays, business process management is an important approach for managing organizations from an operational perspective. As a consequence, it is common to see organizations develop collections of hundreds or even thousands of business process models. Such large collections of process models bring new challenges and provide new opportunities, as the knowledge that they encapsulate requires to be properly managed. Therefore, a variety of techniques for managing large collections of business process models is being developed. The goal of this paper is to provide an overview of the management techniques that currently exist, as well as the open research challenges that they pose.
Resumo:
This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.
Resumo:
This thesis examines consumer initiated value co-creation behaviour in the context of convergent mobile online services using a Service-Dominant logic (SD logic) theoretical framework. It focuses on non-reciprocal marketing phenomena such as open innovation and user generated content whereby new viable business models are derived and consumer roles and community become essential to the success of business. Attention to customers. roles and personalised experiences in value co-creation has been recognised in the literature (e.g., Prahalad & Ramaswamy, 2000; Prahalad, 2004; Prahalad & Ramaswamy, 2004). Similarly, in a subsequent iteration of their 2004 version of the foundations of SD logic, Vargo and Lusch (2006) replaced the concept of value co-production with value co-creation and suggested that a value co-creation mindset is essential to underpin the firm-customer value creation relationship. Much of this focus, however, has been limited to firm initiated value co-creation (e.g., B2B or B2C), while consumer initiated value creation, particularly consumer-to-consumer (C2C) has received little attention in the SD logic literature. While it is recognised that not every consumer wishes to make the effort to engage extensively in co-creation processes (MacDonald & Uncles, 2009), some consumers may not be satisfied with a standard product, instead they engage in the effort required for personalisation that potentially leads to greater value for themselves, and which may benefit not only the firm, but other consumers as well. Literature suggests that there are consumers who do, and as a result initiate such behaviour and expend effort to engage in co-creation activity (e.g., Gruen, Osmonbekov and Czaplewski, 2006; 2007 MacDonald & Uncles, 2009). In terms of consumers. engagement in value proposition (co-production) and value actualisation (co-creation), SD logic (Vargo & Lusch, 2004, 2008) provides a new lens that enables marketing scholars to transcend existing marketing theory and facilitates marketing practitioners to initiate service centric and value co-creation oriented marketing practices. Although the active role of the consumer is acknowledged in the SD logic oriented literature, we know little about how and why consumers participate in a value co-creation process (Payne, Storbacka, & Frow, 2008). Literature suggests that researchers should focus on areas such as C2C interaction (Gummesson 2007; Nicholls 2010) and consumer experience sharing and co-creation (Belk 2009; Prahalad & Ramaswamy 2004). In particular, this thesis seeks to better understand consumer initiated value co-creation, which is aligned with the notion that consumers can be resource integrators (Baron & Harris, 2008) and more. The reason for this focus is that consumers today are more empowered in both online and offline contexts (Füller, Mühlbacher, Matzler, & Jawecki, 2009; Sweeney, 2007). Active consumers take initiatives to engage and co-create solutions with other active actors in the market for their betterment of life (Ballantyne & Varey, 2006; Grönroos & Ravald, 2009). In terms of the organisation of the thesis, this thesis first takes a „zoom-out. (Vargo & Lusch, 2011) approach and develops the Experience Co-Creation (ECo) framework that is aligned with balanced centricity (Gummesson, 2008) and Actor-to-Actor worldview (Vargo & Lusch, 2011). This ECo framework is based on an extended „SD logic friendly lexicon. (Lusch & Vargo, 2006): value initiation and value initiator, value-in-experience, betterment centricity and betterment outcomes, and experience co-creation contexts derived from five gaps identified from the SD logic literature review. The framework is also designed to accommodate broader marketing phenomena (i.e., both reciprocal and non-reciprocal marketing phenomena). After zooming out and establishing the ECo framework, the thesis takes a zoom-in approach and places attention back on the value co-creation process. Owing to the scope of the current research, this thesis focuses specifically on non-reciprocal value co-creation phenomena initiated by consumers in online communities. Two emergent concepts: User Experience Sharing (UES) and Co-Creative Consumers are proposed grounded in the ECo framework. Together, these two theorised concepts shed light on the following two propositions: (1) User Experience Sharing derives value-in-experience as consumers make initiative efforts to participate in value co-creation, and (2) Co-Creative Consumers are value initiators who perform UES. Three research questions were identified underpinning the scope of this research: RQ1: What factors influence consumers to exhibit User Experience Sharing behaviour? RQ2: Why do Co-Creative Consumers participate in User Experience Sharing as part of value co-creation behaviour? RQ3: What are the characteristics of Co-Creative Consumers? To answer these research questions, two theoretical models were developed: the User Experience Sharing Behaviour Model (UESBM) grounded in the Theory of Planned Behaviour framework, and the Co-Creative Consumer Motivation Model (CCMM) grounded in the Motivation, Opportunity, Ability framework. The models use SD logic consistent constructs and draw upon multiple streams of literature including consumer education, consumer psychology and consumer behaviour, and organisational psychology and organisational behaviour. These constructs include User Experience Sharing with Other Consumers (UESC), User Experience Sharing with Firms (UESF), Enjoyment in Helping Others (EIHO), Consumer Empowerment (EMP), Consumer Competence (COMP), and Intention to Engage in User Experience Sharing (INT), Attitudes toward User Experience Sharing (ATT) and Subjective Norm (SN) in the UESBM, and User Experience Sharing (UES), Consumer Citizenship (CIT), Relating Needs of Self (RELS) and Relating Needs of Others (RELO), Newness (NEW), Mavenism (MAV), Use Innovativeness (UI), Personal Initiative (PIN) and Communality (COMU) in the CCMM. Many of these constructs are relatively new to marketing and require further empirical evidence for support. Two studies were conducted to underpin the corresponding research questions. Study One was conducted to calibrate and re-specify the proposed models. Study Two was a replica study to confirm the proposed models. In Study One, data were collected from a PC DIY online community. In Study Two, a majority of data were collected from Apple product online communities. The data were examined using structural equation modelling and cluster analysis. Considering the nature of the forums, the Study One data is considered to reflect some characteristics of Prosumers and the Study Two data is considered to reflect some characteristics of Innovators. The results drawn from two independent samples (N = 326 and N = 294) provide empirical support for the overall structure theorised in the research models. The results in both models show that Enjoyment in Helping Others and Consumer Competence in the UESBM, and Consumer Citizenship and Relating Needs in CCMM have significant impacts on UES. The consistent results appeared in both Study One and Study Two. The results also support the conceptualisation of Co-Creative Consumers and indicate Co-Creative Consumers are individuals who are able to relate the needs of themselves and others and feel a responsibility to share their valuable personal experiences. In general, the results shed light on "How and why consumers voluntarily participate in the value co-creation process?. The findings provide evidence to conceptualise User Experience Sharing behaviour as well as the Co-Creative Consumer using the lens of SD logic. This research is a pioneering study that incorporates and empirically tests SD logic consistent constructs to examine a particular area of the logic – that is consumer initiated value co-creation behaviour. This thesis also informs practitioners about how to facilitate and understand factors that engage with either firm or consumer initiated online communities.
Resumo:
The compressed gas industry and government agencies worldwide utilize "adiabatic compression" testing for qualifying high-pressure valves, regulators, and other related flow control equipment for gaseous oxygen service. This test methodology is known by various terms including adiabatic compression testing, gaseous fluid impact testing, pneumatic impact testing, and BAM testing as the most common terms. The test methodology will be described in greater detail throughout this document but in summary it consists of pressurizing a test article (valve, regulator, etc.) with gaseous oxygen within 15 to 20 milliseconds (ms). Because the driven gas1 and the driving gas2 are rapidly compressed to the final test pressure at the inlet of the test article, they are rapidly heated by the sudden increase in pressure to sufficient temperatures (thermal energies) to sometimes result in ignition of the nonmetallic materials (seals and seats) used within the test article. In general, the more rapid the compression process the more "adiabatic" the pressure surge is presumed to be and the more like an isentropic process the pressure surge has been argued to simulate. Generally speaking, adiabatic compression is widely considered the most efficient ignition mechanism for directly kindling a nonmetallic material in gaseous oxygen and has been implicated in many fire investigations. Because of the ease of ignition of many nonmetallic materials by this heating mechanism, many industry standards prescribe this testing. However, the results between various laboratories conducting the testing have not always been consistent. Research into the test method indicated that the thermal profile achieved (i.e., temperature/time history of the gas) during adiabatic compression testing as required by the prevailing industry standards has not been fully modeled or empirically verified, although attempts have been made. This research evaluated the following questions: 1) Can the rapid compression process required by the industry standards be thermodynamically and fluid dynamically modeled so that predictions of the thermal profiles be made, 2) Can the thermal profiles produced by the rapid compression process be measured in order to validate the thermodynamic and fluid dynamic models; and, estimate the severity of the test, and, 3) Can controlling parameters be recommended so that new guidelines may be established for the industry standards to resolve inconsistencies between various test laboratories conducting tests according to the present standards?
Resumo:
This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment
Resumo:
Sourcing appropriate funding for the provision of new urban infrastructure has been a policy dilemma for governments around the world for decades. This is particularly relevant in high growth areas where new services are required to support swelling populations. The Australian infrastructure funding policy dilemmas are reflective of similar matters in many countries, particularly the United States of America, where infrastructure cost recovery policies have been in place since the 1970’s. There is an extensive body of both theoretical and empirical literature from these countries that discusses the passing on (to home buyers) of these infrastructure charges, and the corresponding impact on housing prices. The theoretical evidence is consistent in its findings that infrastructure charges are passed on to home buyers by way of higher house prices. The empirical evidence is also consistent in its findings, with “overshifting” of these charges evident in all models since the 1980’s, i.e. $1 infrastructure charge results in greater than $1 increase in house prices. However, despite over a dozen separate studies over two decades in the US on this topic, no empirical works have been carried out in Australia to test if similar shifting or overshifting occurs here. The purpose of this research is to conduct a preliminary analysis of the more recent models used in these US empirical studies in order to identify the key study area selection criteria and success factors. The paper concludes that many of the study area selection criteria are implicit rather than explicit. By collecting data across the models, some implicit criteria become apparent, whilst others remain elusive. This data will inform future research on whether an existing model can be adopted or adapted for use in Australia.
Resumo:
The improvement and optimization of business processes is one of the top priorities in an organization. Although process analysis methods are mature today, business analysts and stakeholders are still hampered by communication issues. That is, analysts cannot effectively obtain accurate business requirements from stakeholders, and stakeholders are often confused about analytic results offered by analysts. We argue that using a virtual world to model a business process can benefit communication activities. We believe that virtual worlds can be used as an efficient model-view approach, increasing the cognition of business requirements and analytic results, as well as the possibility of business plan validation. A healthcare case study is provided as an approach instance, illustrating how intuitive such an approach can be. As an exploration paper, we believe that this promising research can encourage people to investigate more research topics in the interdisciplinary area of information system, visualization and multi-user virtual worlds.