433 resultados para Barrier properties


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the psychometric properties of a Persian translation of the Career Adapt-Abilities Scale (CAAS—Iran Form) and its relationships with career satisfaction, business opportunity identification, and entrepreneurial intentions. It was hypothesized that career adaptability relates positively to these three outcomes, even when controlling for demographic and employment characteristics. Data were provided by 204 workers from Iran. Results showed that the overall CAAS score and sub-dimension scores (concern, control, curiosity, and confidence) were highly reliable. Moreover, confirmatory factor analyses indicated that the CAAS—Iran Form measures four distinct dimensions that can be combined into a higher-order career adaptability factor. Findings also demonstrated criterion-related validity of the scale with regard to career satisfaction and entrepreneurial intentions. In contrast, overall career adaptability was not significantly related to opportunity identification, while concern related positively, and control related negatively to opportunity identification. Overall, the CAAS—Iran Form has very good psychometric properties and predicts important career outcomes, suggesting that it can be used for career counseling and future research with Persian-speaking workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Difficulties in the performance of activities of daily living (ADL) are a key feature of developmental coordination disorder (DCD). The DCDDaily-Q was developed to address children's motor performance in a comprehensive range ADL. The aim of this study was to investigate the psychometric properties of this parental questionnaire. Parents of 218 five to eight year-old children (DCD group: N=25; reference group: N=193) completed the research version of the new DCDDaily-Q and the Movement Assessment Battery for Children-2 (MABC2) Checklist and Developmental Coordination Disorder Questionnaire (DCDQ). Children were assessed with the MABC2 and DCDDaily. Item reduction analyses were performed and reliability (internal consistency and factor structure) and concurrent, discriminant, and incremental validity of the DCDDaily-Q were investigated. The final version of the DCDDaily-Q comprises 23 items that cover three underlying factors and shows good internal consistency (Cronbach's α>.80). Moderate correlations were found between the DCDDaily-Q and the other instruments used (p<.001 for the reference group; p>.05 for the DCD group). Discriminant validity of the DCDDaily-Q was good for DCDDaily-Q total scores (p<.001) and all 23 item scores (p<.01), indicating poorer performance in the DCD group. Sensitivity (88%) and specificity (92%) were good. The DCDDaily-Q better predicted DCD than currently used questionnaires (R2=.88). In conclusion, the DCDDaily-Q is a valid and reliable questionnaire to address children's ADL performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To develop the DCDDaily, an instrument for objective and standardized clinical assessment of capacity in activities of daily living (ADL) in children with developmental coordination disorder (DCD), and to investigate its usability, reliability, and validity. Subjects Five to eight-year-old children with and without DCD. Main measures The DCDDaily was developed based on thorough review of the literature and extensive expert involvement. To investigate the usability (assessment time and feasibility), reliability (internal consistency and repeatability), and validity (concurrent and discriminant validity) of the DCDDaily, children were assessed with the DCDDaily and the Movement Assessment Battery for Children-2 Test, and their parents filled in the Movement Assessment Battery for Children-2 Checklist and Developmental Coordination Disorder Questionnaire. Results 459 children were assessed (DCD group, n = 55; normative reference group, n = 404). Assessment was possible within 30 minutes and in any clinical setting. For internal consistency, Cronbach’s α = 0.83. Intraclass correlation = 0.87 for test–retest reliability and 0.89 for inter-rater reliability. Concurrent correlations with Movement Assessment Battery for Children-2 Test and questionnaires were ρ = −0.494, 0.239, and −0.284, p < 0.001. Discriminant validity measures showed significantly worse performance in the DCD group than in the control group (mean (SD) score 33 (5.6) versus 26 (4.3), p < 0.001). The area under curve characteristic = 0.872, sensitivity and specificity were 80%. Conclusions The DCDDaily is a valid and reliable instrument for clinical assessment of capacity in ADL, that is feasible for use in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new procedure for the preparation of amorphous Ni-Co-B nanoparticles is reported, with a detailed investigation of their morphology by X-ray diffraction and transmission electron microscopy, as well as their magnetic properties. Many factors, such as chemical composition, anisotropy, size and shape of the particles, were controlled through chemical synthesis, resulting in the control of morphological and magnetic properties of the nanoparticles. Controlling pH values with ethylenediamine and using sodium dodecyl sulfate surfactant lowered the size of the nanoparticles to below 10 nm. Such a small structure and chemical disorder in nanocrystalline materials lead to magnetic properties that are different from those in their bulk-sized counterparts. The obtained nanoparticles can be used for different purposes, from pharmaceutical applications to implementations in different materials technology. The focus of this research is the synthesis of Ni-Co-B nanoparticles in a new way and studying the reaction of Ni-Co-B nanoparticles with Mg and B precursors and their effect on MgB2 properties. New nanostructures are formed in the reaction of Ni-Co-B nanoparticles with Mg: Mg2Ni, Co2Mg and possibly Mg2Co.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although BaZr 0.8Y 0.2O 3-δ(BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500°C and 1600°C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600°C, the total conductivity of BZY-CaO was 2.14 × 10 -3 S/cm, in wet Ar. Anode-supported fuel cells with 25 μm-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ) configuration was 141 mW/cm 2 at 700°C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficult sintering of BaZr0.8Y0.2O 3-δ (BZY20) powders makes the fabrication of anode-supported BZY20 electrolyte films complex. Dense BZY20 membranes were successfully fabricated on anode substrates made of sinteractive NiO-BZY20 powders, prepared by a combustion method. With respect to traditional anode substrates made of powders prepared by mechanical mixing, the anode substrates made of the wet-chemically synthesized composite NiO-BZY20 powders significantly promoted the densification of BZY20 membranes: dense BZY20 films were obtained after co-pressing and co-firing at 1300 °C, a much lower temperature than those usually needed for densifying BZY20 membranes. Improved electrochemical performance was also observed: the supported BZY20 films maintained a high proton conductivity, up to 5.4 × 10-3 S cm-1 at 700 °C. Moreover, an anode-supported fuel cell with a 30 m thick BZY20 electrolyte film fabricated at 1400 °C on the anode made of the wet-chemically synthesized NiO-BZY20 powder showed a peak power density of 172 mW cm-2 at 700 °C, using La0.6Sr0.4Co 0.2Fe0.8O3-δ-BaZr0.7Y 0.2Pr0.1O3-δ as the cathode material, with a remarkable performance for proton-conducting solid oxide fuel cell (SOFC) applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on singlephase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5-15N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53-0.63 against AISI 52100 steel and between 0.51-0.56 against Si3N4 ceramic. We found thatwear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10-4mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion of aqueous γ-Y2Si2O7 suspensions, which contain only one component but have a complex ion environment, was studied by the introduction of two different polymer dispersants, polyethylenimine (PEI) and polyacrylic acid (PAA). The suspension without any dispersant remains stable in the pH range of 9-11.5 because of electrostatic repulsion, while it is flocculated upon stirring due to the readsorption of hydrolyzed ions on the colloid surface. However, suspensions with 1 dwb% PEI exhibit greater stability in the pH range of 4-11.5. The addition of PEI shifts the isoelectric point (IEP) of the suspensions from pH 5.8 to 10.8. Near the IEP (pHIEP=10.8), the stability of the suspensions with PEI is dominated by the steric effect. When the pH is decreased to acid direction, the stabilization mechanism is changed from steric hindrance to an electrosteric effect little by little. PAA also has the effect of reducing the hydrolysis speed via a "buffer effect" in the basic pH range, but the lack of adsorption between the highly ionized anionic polymer molecules and the negative colloid particle surfaces shows no positive effect on hydrolysis of colloids and on the stabilization of Y2Si 2O7 suspensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-Y2Si2O7 is a promising candidate both for high temperature structural applications and as thermal barrier coatings due to its unique combination of properties, such as high melting point, good machinability, high thermal stability, low linear thermal expansion coefficient (3.9 × 10-6 K-1, 25-1400 °C) and low thermal conductivity (<3 W/m K above 300 °C). In this work, the hot corrosion behavior of γ-Y2Si2O7 in strongly basic Na2CO3 molten salt at 850-1000 °C for 20 h in flowing air was investigated. In the employed conditions, multi-layer corrosion scales with total thickness less than 90 μm were formed. At 850-900 °C, the outmost layer of the scale was composed of the reprecipitation of Y2O3, the bottom of a Si-rich Na2O·xSiO2 (x > 3.65) melt layer, and the middle of a NaYSiO4 layer. At 1000 °C, the corrosion products turned out to be a mixture of NaY9Si6O26 and Si-rich Na2O·xSiO2 (x > 3.65). In all cases, a thin layer of protective SiO2 formed under the Na2O·xSiO2 melt and protected the bulk material from further corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mechanical properties of bulk single-phase γ-Y2Si2O7 ceramic are reported. γ-Y2Si2O7 exhibits low shear modulus, excellent damage tolerance, and thus has a good machinability ready for metal working tools. To understand the underlying mechanism of machinability, drilling test, Hertzian contact test, and density functional theory (DFT) calculation are employed. Hertzian contact test demonstrates that γ-Y2Si2O7 is a "quasi-plastic" ceramic and the intrinsically weak interfaces contribute to its machinability. Crystal structure characteristics and DFT calculations of γ-Y2Si2O7 suggest that some weakly bonded planes, which involve Y-O bonds that can be easily broken, are the sources of the low shear deformation resistance and good machinability.