547 resultados para BENCHMARKING SUSTAINABLE MOBILITY
Resumo:
Pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione or diketopyrrolopyrrole (DPP) is a useful electron-withdrawing fused aromatic moiety for the preparation of donor-acceptor polymers as active semiconductors for organic electronics. This study uses a DPP-furan-containing building block, 3,6-di(furan-2-yl)pyrrolo[3,4- c]pyrrole-1,4(2H,5H)-dione (DBF), to couple with a 2,2′-bithiophene unit, forming a new donor-acceptor copolymer, PDBFBT. Compared to its structural analogue, 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBT), DBF is found to cause blue shifts of the absorption spectra both in solution and in thin films and a slight reduction of the highest occupied molecular orbital (HOMO) energy level of the resulting PDBFBT. Despite the fact that its thin films are less crystalline and have a rather disordered chain orientation in the crystalline domains, PDBFBT shows very high hole mobility up to 1.54 cm 2 V-1 s-1 in bottom-gate, top-contact organic thin film transistors.
Resumo:
Furan substituted diketopyrrolopyrrole (DBF) combined with benzothiadiazole based polymer semiconductor PDPP-FBF has been synthesized and evaluated as an ambipolar semiconductor in organic thin-film transistors. Hole and electron mobilities as high as 0.20 cm 2 V -1 s -1 and 0.56 cm 2 V -1 s -1, respectively, are achieved for PDPP-FBF.
Resumo:
A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.
Resumo:
In this work, we report a novel donor-acceptor based solution processable low band gap polymer semiconductor, PDPP-TNT, synthesized via Suzuki coupling using condensed diketopyrrolopyrrole (DPP) as an acceptor moiety with a fused naphthalene donor building block in the polymer backbone. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The hole mobilities of 0.65 cm2 V-1 s-1 and 0.98 cm2 V -1 s-1 are achieved respectively in bottom gate and dual gate OTFT devices with on/off ratios in the range of 105 to 10 7. Additionally, due to its appropriate HOMO (5.29 eV) energy level and optimum optical band gap (1.50 eV), PDPP-TNT is a promising candidate for organic photovoltaic (OPV) applications. When this polymer semiconductor is used as a donor and PC71BM as an acceptor in OPV devices, high power conversion efficiencies (PCE) of 4.7% are obtained. Such high mobility values in OTFTs and high PCE in OPV make PDPP-TNT a very promising polymer semiconductor for a wide range of applications in organic electronics.
Resumo:
A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.
Resumo:
We report here the synthesis, characterization, and organic thin-film transistor (OTFT) mobilities of 4,7-bis(5-(5-hexylthiophen-2-yl)thiophen-2-yl) benzo[1,2,5]thiadiazole (DH-BTZ-4T). DH-BTZ-4T was prepared in one high-yield step from commercially available materials using Suzuki chemistry and purified by column chromatography. OTFTs with hole mobilities of 0.17 cm2/(Vs) and on/off current ratios of 1 × 105 were prepared from DH-BTZ-4T active layers deposited by vacuum deposition. As DH-BTZ-4T is soluble in common solvents, solution processed devices were also prepared by spin coating yielding preliminary mobilities of 6.0 × 10-3 cm 2/(Vs). The promising mobilities and low band gap (1.90 eV) coupled with solution processability and ambient stability makes this material an excellent candidate for application in organic electronics.
Resumo:
A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.
Resumo:
The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole- naphthalene co-polymer and PC71BM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously. © 2013 AIP Publishing LLC.
Resumo:
This study examines the relationship between environmental performance and economic performance in Japanese manufacturing firms. The environmental performance indicators include CO2 emissions and the aggregate toxic risk associated with chemical emissions relative to sales. Return on assets (ROA) is used as an indicator of economic performance. We demonstrate that there is a significant inverted U-shaped relationship between ROA and environmental performance calculated by aggregated toxic risk. We also find that the environmental performance increases ROA through both returns on sales and improved capital turnover. However, we observe a significant positive relationship between financial performance and environmental performance based on CO2 emissions. These findings may provide evidence for the consequences of firms' environmental behavior and sustainable development. © 2012 John Wiley & Sons, Ltd and ERP Environment.
Resumo:
The problem of modal choice between rail and air arises as public awareness of carbon dioxide (CO2) emissions by the transportation sector rises. In this paper, we answer this question quantitatively by performing an efficiency benchmarking analysis that takes into account life-cycle CO2 emission due to transport service provision. The paper employs nonparametric efficiency estimation methods, namely a slacks-based inefficiency measure, as well as a more conventional directional distance function approach. We apply them to a panel data set for three major railway companies and the aviation sector in Japan for the period from 1999 to 2007. Results shows that, contrary to the common argument, air transport can still be more socially efficient than rail transport, even when the environmental load due to CO2 emission is incorporated. This is due to the aviation sector's extremely low user cost, measured in terms of in-vehicle time. In other words, aviation is a necessary transportation mode for those with a very high willingness to pay for their time.
Resumo:
The rationale for providing state subsidised public transport has changed over time from a social obligation to provide transport options for those without access to private transport to an environmental and economic imperative to minimize congestion and greenhouse gas emissions. In many jurisdictions this shift has seen a greater focus on the provision of peak hour commuter services and a shift in the demographic profile of the riding public and a significant increase in the number of commuter passengers relative to others. The scheduling of commuter services is not geared to meet the needs of children and their generally female carers who often need to engage in trip chaining and travel outside peak commuting periods and on weekends. In addition to service scheduling difficulties, transport infrastructure, both on-board and supporting infrastructure such as bus stops, train stations and connecting footpaths often do not support children and their carers to use public transport services. Combined with a negative attitude by passengers and service providers, such as bus drivers, which may see children, babies and young people as out of place and unwelcome on commuter services, these issues conspire to hinder the use of public transport by children and their carers. Overlaying feminist geography analysis and insights and child-friendly cities objectives, this paper proposes some basic criteria for the provision of public transport services and supporting infrastructure which meets the needs of children, babies and their carers and juxtaposes the achievement of these in South East Queensland, Australia and Stockholm, Sweden.
Resumo:
In recent years, a great deal has been written about the benefits and ethics of including young people in participative decision-making. This has been accompanied by a burgeoning interest in including their views in participatory planning exercises that has not always been realised in practice. Drawing on a detailed analysis of the perceptions of adults and young people involved in a participatory planning exercise on Australia‟s Gold Coast, we believe that there are two major hurdles to the „full‟ engagement of young people that are in some respects two sides of the same coin: the sometimes paternalistic perceptions and often dismissive attitude that many adults have towards the participation of young people; and the perceptions that young people may have of themselves and their subordinate place in an adult-dominated planning environment. Together, such views act to place limitations on the participation of young people because they set up unrealistic expectations for both adult and younger participants in terms of how and why young people participate, and what this participation should „look and feel‟ like. In this paper, through the metaphor of boxes, we propose a number of issues that should be addressed when involving young people in participatory planning processes to ensure the most from their participation for all involved.
Resumo:
In the built environment sector, a range of innovations are delivering environmental improvements with mixed success worldwide. The authors of this paper argue that a more “disruptive” form of innovation is needed to bring about significant and systemic change within the sector. Critical to this transition is the development of new behaviours and values. In particular, built environment professionals need to become active change agents in cultivating these new behaviours and values through the development of collaborative visions, scenarios, practices, and ideas. This paper identifies and discusses the critical role that design (in its broadest sense) can play in this process. Drawing on a comprehensive review of literature, the authors highlight a number of transformational opportunities for cross professional learning and sharing between design and built environment disciplines in achieving environmental innovation (eco-innovation). The paper also considers several design-based concepts that have a potential application in the built environment sector including: design thinking, social innovation (human-centered), and disruptive innovation (transformational) approaches. The research findings will assist in building the capabilities of designers and innovators to create sustainable solutions to global problems, and in supporting the social diffusion of systems-changing ideas in the built environment sector.
Resumo:
Rapid urbanization in developing countries is putting stress on current infrastructure, which is resulting in the rapid consumption of natural resources to cope with the increasing demand of the population. Saudi Arabia is one of the developing countries facing rapid urbanization where its infrastructure is facing a huge demand by the increasing urbanization levels of its major cities. Developing sustainable housing in Saudi Arabia is a must for the preservation of resources for future generations of the region and of the world. In the coming years, several resources (such as fossil fuels and natural water) will be facing shortage if not managed properly. Providing electricity for housing in Saudi Arabia is one of the biggest challenges facing the country, where it is estimated that by 2050 energy demand in the Kingdom will be approximately 120 GW, and to meet this growing demand, 8 million barrels of oil per day will be required. However, implementation of Sustainable Housing in Saudi is still problematic to reach the desired goals of various key Saudi stakeholders. This paper analyses three case studies that have adopted sustainable construction methods and compares them to traditional non-sustainable houses. The outcome suggests that there is a viable chance for development of sustainable housing in the region if supported by the government with less red tape to deal with. This paper recommends that the Saudi governments should mandate new laws to reduce the overall consumption of energy and water to reduce the overall consumption of natural resources to secure the future generation’s demand of natural resources.