436 resultados para mechanical contact


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic thin films have myriad of applications in biological interfaces, micro-electromechanical systems and organic electronics. Polyterpenol thin films fabricated via RF plasma polymerization have been substantiated as a promising gate insulating and encapsulating layer for organic optoelectronics, sacrificial place-holders for air gap fabrication as well as antibacterial coatings for medical implants. This study aims to understand the wettability and solubility behavior of the nonsynthetic polymer thin film, polyterpenol. Polyterpenol exhibited monopolar behavior, manifesting mostly electron donor properties, and was not water soluble due to the extensive intermolecular and intramolecular hydrogen bonds present. Hydrophobicity of polyterpenol surfaces increased for films fabricated at higher RF power attributed to reduction in oxygen containing functional groups and increased cross linking. The studies carried out under various deposition conditions vindicate that we could tailor the properties of the polyterpenol thin film for a given application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the effect of iodine doping on optical and surface properties of polyterpenol thin films deposited from non-synthetic precursor by means of plasma polymerisation. Spectroscopic ellipsometry studies showed iodine doping reduced the optical band gap from 2.82 eV to 1.50 eV for pristine and doped samples respectively. Higher levels of doping notably reduced the transparency of films, an issue if material is considered for applications that require high transparency. Contact angle studies demonstrated higher hydrophilicity for films deposited at increased doping levels, results confirmed by XPS Spectroscopy and FTIR. Doping had no significant effect on the surface profile or roughness of the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the late 1990s, the International Contact Lens Prescribing Survey Consortium has prospectively gathered information about 285,000 contact lens fits from more than 50 countries. This article presents our 14th annual summary of current trends published in Contact Lens Spectrum. With only minor differences in the distribution of our surveys among markets, we have continued to adopt the same approach throughout the past 18 years. Through national coordinators, we approach contact lens prescribers in each country and ask them to record information about the first 10 patients whom they fit with contact lenses after receipt of our survey form. The information collected is generic, and respondents are weighted to reflect the volume of contact lens fits undertaken by each. For this 2014 report, we present information about 25,179 contact lens fits from 32 countries...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To eye care practitioners, citation metrics may seem to be a somewhat esoteric and irrelevant concept, far removed from the realities or real world, day-to-day clinical practice. However, quantitative analysis of the published literature is becoming increasingly important, and a beautiful example of this is presented in this issue of the Journal of Optometry. My former PhD student, Genís Cardona, has teamed up with Joan Sanz to undertake a thorough and telling analysis of current worldwide publishing trends in the contact lens field. When held in the mirror, this work reflects the growing contributions from Spanish researchers to the field...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To document contact lens prescribing patterns in the United States between 2002 and 2014. Methods A survey of contact lens prescribing trends was conducted each year between 2002 and 2014, inclusive. Randomly selected contact lens practitioners were asked to provide information relating to 10 consecutive contact lens fits between January and March each year. Results Over the 13-year survey period, 1650 survey forms were received from US practitioners representing details of 7702 contact lens fits. The mean (±SD) age of lens wearers was 33.6 (±15.2) years, of whom 65.2% were female. Rigid lens new fits decreased from 13.0% in 2002 to 9.4% in 2014. Across this period, silicone hydrogels have replaced mid water contact lens hydrogels as the soft lens material of choice. Toric lenses represented about 25 to 30% of all soft lens fits. Multifocal soft lenses are generally preferred to monovision. Daily disposable lens fits have recently increased, and in 2014, they represented 27.1% of all soft lens fits. Most lenses are prescribed on 1 to 2 weekly or monthly lens replacement regimen. Extended wear remains a minority lens wearing modality. The vast majority of those wearing reusable lenses use multipurpose lens care solutions. Lenses are mostly worn 7 d/wk. Conclusions This survey has revealed prescribing trends and preferences in the United States over the past 13 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efron, Morgan and Woods share the findings of their latest annual survey of Australian contact lens prescribing habits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have been collecting data on worldwide contact lens prescribing habits for almost 20 years. Over this time period, we have amassed prospective information about 315,000 contact lens fits in 59 countries. This article marks our 15th report in Contact Lens Spectrum and features a breakdown of more than 23,000 contact lens fits in 34 markets. As in previous years, our international network of coordinators distributed survey forms to eyecare practitioners in their market who then recorded generic information about the first 10 patients fit with contact lenses after receipt. Information is gathered about patient age and gender; whether the contact lenses are prescribed as a new fit or a refit; contact lens material, design, and replacement frequency; number of intended days per week of use; wearing modality; and care system. Contact lens fits are weighted to reflect the number of fits undertaken by each eyecare practitioner. The study data were entered and processed at the University of Manchester and at the University of Waterloo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful healing of long bone fractures is dependent on the mechanical environment created within the fracture, which in turn is dependent on the fixation strategy. Recent literature reports have suggested that locked plating devices are too stiff to reliably promote healing. However, in vitro testing of these devices has been inconsistent in both method of constraint and reported outcomes, making comparisons between studies and the assessment of construct stiffness problematic. Each of the methods previously used in the literature were assessed for their effect on the bending of the sample and concordant stiffness. The choice of outcome measures used in in vitro fracture studies was also assessed. Mechanical testing was conducted on seven hole locked plated constructs in each method for comparison. Based on the assessment of each method the use of spherical bearings, ball joints or similar is suggested at both ends of the sample. The use of near and far cortex movement was found to be more comprehensive and more accurate than traditional centrally calculated inter fragmentary movement values; stiffness was found to be highly susceptible to the accuracy of deformation measurements and constraint method, and should only be used as a within study comparison method. The reported stiffness values of locked plate constructs from in vitro mechanical testing is highly susceptible to testing constraints and output measures, with many standard techniques overestimating the stiffness of the construct. This raises the need for further investigation into the actual mechanical behaviour within the fracture gap of these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on socio-emotional selectivity and self-categorization theories, we developed and tested a model on how the interplay between employee age and opportunities for generativity and development predicts age bias and turnover intentions via intergenerational contact quality in the workplace. We hypothesized indirect effects of opportunities for generativity on outcomes through intergenerational contact quality among older workers only, whereas we expected that the indirect effects of opportunities for development are stronger for young compared with older workers. Data came from 321 employees in Belgium who responded to an online questionnaire. Results showed that age moderated the relationships of opportunities for generativity and development with intergenerational contact quality consistent with the expected patterns. Furthermore, age moderated the indirect effects of opportunities for generativity and development on age bias through intergenerational contact quality, but not on turnover intentions. Implications for future research and practical suggestions for managing intergenerational contact at work are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To quantify the influence of short-term wear of miniscleral contact lenses on the morphology of the corneo-scleral limbus, the conjunctiva, episclera and sclera. METHODS OCT images of the anterior eye were captured before, immediately following 3h of wear and then 3h after removal of a miniscleral contact lens for 10 young (27±5 years) healthy participants (neophyte rigid lens wearers). The region of analysis encompassed 1mm anterior, to 3.5mm posterior to the scleral spur. Natural diurnal variations in thickness were measured on a separate day and compensated for in subsequent analyses. RESULTS Following 3h of lens wear, statistically significant tissue thinning was observed across all quadrants, with a mean decrease in thickness of -24.1±3.6μm (p<0.001), which diminished, but did not return to baseline 3h after lens removal (-16.9±1.9μm, p<0.001). The largest tissue compression was observed in the superior quadrant (-49.9±8.5μm, p<0.01) and in the annular zone 1.5mm from the scleral spur (-48.2±5.7μm), corresponding to the approximate edge of the lens landing zone. Compression of the conjunctiva/episclera accounted for about 70% of the changes. CONCLUSIONS Optimal fitting miniscleral contact lenses worn for three hours resulted in significant tissue compression in young healthy eyes, with the greatest thinning observed superiorly, potentially due to the additional force of the eyelid, with a partial recovery of compression 3h after lens removal. Most of the morphological changes occur in the conjunctiva/episclera layers.