460 resultados para fault tolerant systems
Resumo:
Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.
Resumo:
Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show: Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load. There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures. The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases. The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.
Resumo:
In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.
Resumo:
This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.
Resumo:
Linking real-time schedulability directly to the Quality of Control (QoC), the ultimate goal of a control system, a hierarchical feedback QoC management framework with the Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies as plug-ins is proposed in this paper for real-time control systems with multiple control tasks. It uses a task decomposition model for continuous QoC evaluation even in overload conditions, and then employs heuristic rules to adjust the period of each of the control tasks for QoC improvement. If the total requested workload exceeds the desired value, global adaptation of control periods is triggered for workload maintenance. A sufficient stability condition is derived for a class of control systems with delay and period switching of the heuristic rules. Examples are given to demonstrate the proposed approach.
Resumo:
Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.
Resumo:
The application of variable structure control (VSC) for power systems stabilization is studied in this paper. It is the application, aspects and constraints of VSC which are of particular interest. A variable structure control methodology has been proposed for power systems stabilization. The method is implemented using thyristor controlled series compensators. A three machine power system is stabilized using a switching line control for large disturbances which becomes a sliding control as the disturbance becomes smaller. The results demonstrate the effectiveness of the methodology proposed as an useful tool to suppress the oscillations in power systems.
Resumo:
Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.
Resumo:
This paper discusses diesel engine condition monitoring (CM) using acoustic emissions (AE)as well as some of the commonly encountered diesel engine problems. Also discussed are some of the underlying combustion related faults and the methods used in past studies to simulate diesel engine faults. The initial test involved an experimental simulation of two common combustion related diesel engine faults, namely diesel knock and misfire. These simulated faults represent the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank angle encoder and top-dead centre (TDC) signals. Using these signals, it was possible to characterise the effect of different combustion conditions and hence, various diesel engine in-cylinder pressure profiles.
Resumo:
In today’s information society, electronic tools, such as computer networks for the rapid transfer of data and composite databases for information storage and management, are critical in ensuring effective environmental management. In particular environmental policies and programs for federal, state, and local governments need a large volume of up-to-date information on the quality of water, air, and soil in order to conserve and protect natural resources and to carry out meteorology. In line with this, the utilization of information and communication technologies (ICTs) is crucial to preserve and improve the quality of life. In handling tasks in the field of environmental protection a range of environmental and technical information is often required for a complex and mutual decision making in a multidisciplinary team environment. In this regard e-government provides a foundation of the transformative ICT initiative which can lead to better environmental governance, better services, and increased public participation in environmental decision- making process.
Resumo:
Countless factors affect the inner workings of a city, so in an attempt to gain an understanding of place and making sound decisions, planners need to utilize decision support systems (DSS) or planning support systems (PSS). PSS were originally developed as DSS in academia for experimental purposes, but like many other technologies, they became one of the most innovative technologies in parallel to rapid developments in software engineering as well as developments and advances in networks and hardware. Particularly, in the last decade, the awareness of PSS have been dramatically heightened with the increasing demand for a better, more reliable and furthermore a transparent decision-making process (Klosterman, Siebert, Hoque, Kim, & Parveen, 2003). Urban planning as an act has quite different perspective from the PSS point of view. The unique nature of planning requires that spatial dimension must be considered within the context of PSS. Additionally, the rapid changes in socio-economic structure cannot be easily monitored or controlled without an effective PSS.
Resumo:
This thesis conceptualises Use for IS (Information Systems) success. While Use in this study describes the extent to which an IS is incorporated into the user’s processes or tasks, success of an IS is the measure of the degree to which the person using the system is better off. For IS success, the conceptualisation of Use offers new perspectives on describing and measuring Use. We test the philosophies of the conceptualisation using empirical evidence in an Enterprise Systems (ES) context. Results from the empirical analysis contribute insights to the existing body of knowledge on the role of Use and demonstrate Use as an important factor and measure of IS success. System Use is a central theme in IS research. For instance, Use is regarded as an important dimension of IS success. Despite its recognition, the Use dimension of IS success reportedly suffers from an all too simplistic definition, misconception, poor specification of its complex nature, and an inadequacy of measurement approaches (Bokhari 2005; DeLone and McLean 2003; Zigurs 1993). Given the above, Burton-Jones and Straub (2006) urge scholars to revisit the concept of system Use, consider a stronger theoretical treatment, and submit the construct to further validation in its intended nomological net. On those considerations, this study re-conceptualises Use for IS success. The new conceptualisation adopts a work-process system-centric lens and draws upon the characteristics of modern system types, key user groups and their information needs, and the incorporation of IS in work processes. With these characteristics, the definition of Use and how it may be measured is systematically established. Use is conceptualised as a second-order measurement construct determined by three sub-dimensions: attitude of its users, depth, and amount of Use. The construct is positioned in a modified IS success research model, in an attempt to demonstrate its central role in determining IS success in an ES setting. A two-stage mixed-methods research design—incorporating a sequential explanatory strategy—was adopted to collect empirical data and to test the research model. The first empirical investigation involved an experiment and a survey of ES end users at a leading tertiary education institute in Australia. The second, a qualitative investigation, involved a series of interviews with real-world operational managers in large Indian private-sector companies to canvass their day-to-day experiences with ES. The research strategy adopted has a stronger quantitative leaning. The survey analysis results demonstrate the aptness of Use as an antecedent and a consequence of IS success, and furthermore, as a mediator between the quality of IS and the impacts of IS on individuals. Qualitative data analysis on the other hand, is used to derive a framework for classifying the diversity of ES Use behaviour. The qualitative results establish that workers Use IS in their context to orientate, negotiate, or innovate. The implications are twofold. For research, this study contributes to cumulative IS success knowledge an approach for defining, contextualising, measuring, and validating Use. For practice, research findings not only provide insights for educators when incorporating ES for higher education, but also demonstrate how operational managers incorporate ES into their work practices. Research findings leave the way open for future, larger-scale research into how industry practitioners interact with an ES to complete their work in varied organisational environments.
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.