482 resultados para electronic paper display
Resumo:
The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.
Resumo:
The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. In the Ubiquitous Eco Cities, telecommunication technologies plan an important role in monitoring and managing activities over wired, wireless and fibre-optic networks. particularly technology convergence creates new ways in which the information and telecommunication technologies are used and formed the back bone or urban management systems. The research paper reports and introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
This paper examines the linkages between diversity management (DM), innovation and high performance in social enterprises. These linkages are explicated beyond traditional framing of DM limited to workforce composition, to include discussions of innovation through networked diversity practices; reconciliation; and funding options. The paper draws upon a UK-based national survey and the case study data. Multiple data collection methods were used, including semi-structured interviews, questionnaires and workshops with participant observation. NVivo and SPSS software packages were utilized in order to analyse the qualitative and quantitative data, respectively. We used thematic coding and cropping techniques in analysing the case studies in the paper. A broad range of conflicting and supporting literature was enfolded into the conversations and discussion. The paper demonstrates that social enterprises exhibit unique characteristics in terms of size and location, as well as their double remit to add value both economically and socially. As a conclusion, we argue for social enterprises to consider options for DM in the interests of maximization of innovation and business performance. We contend that further research is needed to describe how social entrepreneurs draw upon their various ‘diversity resources’ in the process of innovation
Resumo:
In the past eight years, Australia has adopted the use of environmental offsets as a means to compensate for environmental degradation from development. Queensland has more environmental offsetting policies than any other Australian State or Territory. The methodology has profound effects on development companies, landowners (both private and public), regional land planning, organizations, government agencies, monetary banking institutions and environmental conservation bodies.
Resumo:
Hydraulic excavators in the mining industry are widely used owing to the large payload capabilities these machines can achieve. However, there are very few optimisation studies for producing efficient hydraulic excavator backets. An efficient bucket can avoid unnecessary weight; greatly influence the payload and optimise the efficiency of hydraulic mining excavators. This paper presents a framework for the development of a scaled hydraulic excavator by examining the geometry and force relationships. A small hydraulic excavator was purchased and fitted with a broom scaled to a factor. Geometric and force relationships of the model were derived to assist computer instrumentation to retrieve necessary variable input for bucket design.
Resumo:
Auto rickshaws (3-wheelers) are the most sought after transport among the urban and rural poor in India. The assembly of the vehicle involves assemblies of several major components. The L-angle is the component that connects the front panel with the vehicle floor. Current L-angle part has been observed to experience permanent deformation failure over period of time. This paper studies the effect of the addition of stiffeners on the L-angle to increase the strength of the component. A physical model of the L-angle was reversed engineered and modelled in CAD before static loading analysis were carried out on the model using finite element analysis. The modified L-angle fitted with stiffeners was shown to be able to withstand more load compare to previous design.
Resumo:
Manufacturing organisations spend more on Business Process Improvement initiatives to make them more competitive in growing global market. This paper presents a Rapid Improvement Workshop (RIW) framework which companies can used to identify the critical factors regulating the diffusion of business process improvement in their company. The framework can then be used address how process improvement can be efficiently implemented. We use the results from case studies at Caterpillar India. The paper identifies the critical factors that contribute to the successful implementation of process improvement programs in manufacturing organisations. We further identify certain technological and cultural barriers to the implementation of process improvement programs and how Indian manufacturing companies can overcome these barriers to attain competitive advantage in the global markets.
Resumo:
In many product categories of durable goods such as TV, PC, and DVD player, the largest component of sales is generated by consumers replacing existing units. Aggregate sales models proposed by diffusion of innovation researchers for the replacement component of sales have incorporated several different replacement distributions such as Rayleigh, Weibull, Truncated Normal and Gamma. Although these alternative replacement distributions have been tested using both time series sales data and individual-level actuarial “life-tables” of replacement ages, there is no census on which distributions are more appropriate to model replacement behaviour. In the current study we are motivated to develop a new “modified gamma” distribution by two reasons. First we recognise that replacements have two fundamentally different drivers – those forced by failure and early, discretionary replacements. The replacement distribution for each of these drivers is expected to be quite different. Second, we observed a poor fit of other distributions to out empirical data. We conducted a survey of 8,077 households to empirically examine models of replacement sales for six electronic consumer durables – TVs, VCRs, DVD players, digital cameras, personal and notebook computers. This data allows us to construct individual-level “life-tables” for replacement ages. We demonstrate the new modified gamma model fits the empirical data better than existing models for all six products using both a primary and a hold-out sample.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
This paper presents a robust stochastic framework for the incorporation of visual observations into conventional estimation, data fusion, navigation and control algorithms. The representation combines Isomap, a non-linear dimensionality reduction algorithm, with expectation maximization, a statistical learning scheme. The joint probability distribution of this representation is computed offline based on existing training data. The training phase of the algorithm results in a nonlinear and non-Gaussian likelihood model of natural features conditioned on the underlying visual states. This generative model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The instantiated likelihoods are expressed as a Gaussian mixture model and are conveniently integrated within existing non-linear filtering algorithms. Example applications based on real visual data from heterogenous, unstructured environments demonstrate the versatility of the generative models.
Resumo:
This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Resumo:
Decentralised sensor networks typically consist of multiple processing nodes supporting one or more sensors. These nodes are interconnected via wireless communication. Practical applications of Decentralised Data Fusion have generally been restricted to using Gaussian based approaches such as the Kalman or Information Filter This paper proposes the use of Parzen window estimates as an alternate representation to perform Decentralised Data Fusion. It is required that the common information between two nodes be removed from any received estimates before local data fusion may occur Otherwise, estimates may become overconfident due to data incest. A closed form approximation to the division of two estimates is described to enable conservative assimilation of incoming information to a node in a decentralised data fusion network. A simple example of tracking a moving particle with Parzen density estimates is shown to demonstrate how this algorithm allows conservative assimilation of network information.