480 resultados para Relationship intensity
Resumo:
Background Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
Resumo:
The O-specific polysaccharide (OPS) is a variable constituent of the lipopolysaccharide of Gram-negative bacteria. The polymorphic nature of OPSs within a species is usually first defined serologically, and the current serotyping scheme for Yersinia pseudotuberculosis consists of 21 O serotypes of which 15 have been characterized genetically and structurally. Here, we present the structure and DNA sequence of Y. pseudotuberculosis O:10 OPS. The O unit consists of one residue each of d-galactopyranose, N-acetyl-d-galactosamine (2-amino-2-deoxy-d-galactopyranose) and d-glucopyranose in the backbone, with two colitose (3,6-dideoxy-l-xylo-hexopyranose) side-branch residues. This structure is very similar to that shared by Escherichia coli O111 and Salmonella enterica O35. The gene cluster sequences of these serotypes, however, have only low levels of similarity to that of Y. pseudotuberculosis O:10, although there is significant conservation of gene order. Within Y. pseudotuberculosis, the O10 structure is most closely related to the O:6 and O:7 structures.
Resumo:
Objective Bullying and peer victimization in school are serious concerns for students, parents, psychologists, and school officials around the world. This descriptive study examined bullying/victimization among Iranian students and the relationship between bullying and trauma symptoms. Methods This study was a cross-sectional research and descriptive correlative study. Descriptive statistics and Pearson correlation were used to analyze the data. The Revised Olweus Bully/Victim Questionnaire and Trauma symptoms checklist for children (TSCC-A) were administered to 591(325males and 266 females) students aged 10 to 14 year. Results The results revealed that 38.4 % of students reported bullying behavior. In addition, victims had the highest level of depression, anxiety, and anger compared to uninvolved students. Bullies were not related to trauma symptoms. Conclusion Conclusions include detailed recommendations for further empirical studies.
Resumo:
Purpose/Objectives: To examine peak volume of oxygen consumption (VO2peak) changes after a high- or low-intensity exercise intervention. Design: Experimental trial comparing two randomized intervention groups with control. Setting: An exercise clinic at a university in Australia. Sample: 87 prostate cancer survivors (aged 47–80 years) and 72 breast cancer survivors (aged 34–76 years). Methods: Participants enrolled in an eight-week exercise intervention (n = 84) or control (n = 75) group. Intervention participants were randomized to low-intensity (n = 44, 60%–65% VO2peak, 50%–65% of one repetition maximum [1RM]) or high-intensity (n = 40, 75%–80% VO2peak, 65%–80% 1RM) exercise groups. Participants in the control group continued usual routines. All participants were assessed at weeks 1 and 10. The intervention groups were reassessed four months postintervention for sustainability. Main Research Variables: VO2peak and self-reported physical activity. Findings: Intervention groups improved VO2peak similarly (p = 0.083), and both more than controls (p < 0.001). The high-intensity group maintained VO2peak at follow-up, whereas the low-intensity group regressed (p = 0.021). The low-intensity group minimally changed from baseline to follow-up by 0.5 ml/kg per minute, whereas the high-intensity group significantly improved by 2.2 ml/kg per minute (p = 0.01). Intervention groups always reported similar physical activity levels. Conclusions: Higher-intensity exercise provided more sustainable cardiorespiratory benefits than lower-intensity exercise. Implications for Nursing: Survivors need guidance on exercise intensity, because a high volume of low-intensity exercise may not provide sustained health benefits.
Resumo:
Stress and abnormal hypothalamic-pituitary-adrenal axis functioning have been implicated in the early phase of psychosis and may partly explain reported changes in brain structure. This study used magnetic resonance imaging to investigate whether biological measures of stress were related to brain structure at baseline and to structural changes over the first 12 weeks of treatment in first episode patients (n=22) compared with matched healthy controls (n=22). At baseline, no significant group differences in biological measures of stress, cortical thickness or hippocampal volume were observed, but a significantly stronger relationship between baseline levels of cortisol and smaller white matter volumes of the cuneus and anterior cingulate was found in patients compared with controls. Over the first 12 weeks of treatment, patients showed a significant reduction in thickness of the posterior cingulate compared with controls. Patients also showed a significant positive relationship between baseline cortisol and increases in hippocampal volume over time, suggestive of brain swelling in association with psychotic exacerbation, while no such relationship was observed in controls. The current findings provide some support for the involvement of stress mechanisms in the pathophysiology of early psychosis, but the changes are subtle and warrant further investigation.
Resumo:
Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.
Resumo:
It is commonly accepted that regular moderate intensity physical activity reduces the risk of developing many diseases. Counter intuitively, however, evidence also exists for oxidative stress resulting from acute and strenuous exercise. Enhanced formation of reactive oxygen and nitrogen species may lead to oxidatively modified lipids, proteins and nucleic acids and possibly disease. Currently, only a few studies have investigated the influence of exercise on DNA stability and damage with conflicting results, small study groups and the use of different sample matrices or methods and result units. This is the first review to address the effect of exercise of various intensities and durations on DNA stability, focusing on human population studies. Furthermore, this article describes the principles and limitations of commonly used methods for the assessment of oxidatively modified DNA and DNA stability. This review is structured according to the type of exercise conducted (field or laboratory based) and the intensity performed (i.e. competitive ultra/endurance exercise or maximal tests until exhaustion). The findings presented here suggest that competitive ultra-endurance exercise (>4h) does not induce persistent DNA damage. However, when considering the effects of endurance exercise (<4h), no clear conclusions could be drawn. Laboratory studies have shown equivocal results (increased or no oxidative stress) after endurance or exhaustive exercise. To clarify which components of exercise participation (i.e. duration, intensity and training status of subjects) have an impact on DNA stability and damage, additional carefully designed studies combining the measurement of DNA damage, gene expression and DNA repair mechanisms before, during and after exercise of differing intensities and durations are required.
Resumo:
This thesis examines the complementarities and vulnerabilities of customer connectivity that contemporary firms achieved through ubiquitous digital technologies. Taking the example of deployment of smart shopping apps to connect with consumers in the context of Australian retail, the study examines how such customer connectivity positively influences firm performances through firm's customer agility whilst creating implications for firms' digital business strategy through altered customer cognitions. Employing Oliver's (1977) Expectation Confirmation Theory, this study empirically tests a conceptual model involving digital connectivity, digital expectations, experiences and satisfaction of the customers who uses smart shopping apps in Australian consumer retail.
Resumo:
Background The overrepresentation of young drivers in road crashes, injuries and fatalities around the world has resulted in a breadth of injury prevention efforts including education, enforcement, engineering, and exposure control. Despite multifaceted intervention, the young driver problem remains a challenge for injury prevention researchers, practitioners and policy-makers. The intractable nature of young driver crash risks suggests that a deeper understanding of their car use – that is, the purpose of their driving – is required to inform the design of more effective young driver countermeasures. Aims This research examined the driving purpose reported by young drivers, including the relationship with self-reported risky driving behaviours including offences. Methods Young drivers with a Learner or Provisional licence participated in three online surveys (N1 = 656, 17–20 years; N2 = 1051, 17–20 years; N3 = 351, 17–21 years) as part of a larger state-wide project in Queensland, Australia. Results A driving purpose scale was developed (the PsychoSocial Purpose Driving Scale, PSPDS), revealing that young drivers drove for psychosocial reasons such as for a sense of freedom and to feel independent. Drivers who reported the greatest psychosocial purpose for driving were more likely to be male and to report more risky driving behaviours such as speeding. Drivers who deliberately avoided on-road police presence and reported a prior driving-related offence had significantly greater PSPDS scores, and higher reporting of psychosocial driving purposes was found over time as drivers transitioned from the supervised Learner licence phase to the independent Provisional (intermediate) licence phase. Discussion and conclusions The psychosocial needs met by driving suggest that effective intervention to prevent young driver injury requires further consideration of their driving purpose. Enforcement, education, and engineering efforts which consider the psychosocial purpose of the driving are likely to be more efficacious than those which presently do not. Road safety countermeasures could reduce the young driver’s exposure to risk through such mechanisms as encouraging the use of public transport.
Resumo:
Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.
Resumo:
Background Osteocytes, the most abundant cells in bone, havemultiple functions, including acting as mechanosensors and regulating mineralization. It is clear that osteocytes influence bone remodeling by controlling the differentiation and activity of osteoblasts and osteoclasts. Determining the relationship between titanium implants and osteocytes may therefore benefit our understanding of the process of osseointegration. Purpose The aim of this study was to visualize the ultrastructural relationship between osteocytes and the titanium implant surface following osseointegration in vivo. Materials and Methods Titanium implants were placed in the maxillary molar regions of eight female Sprague Dawley rats, 3 months old. The animals were sacrificed 8 weeks after implantation, and undecalcified tissue sections were prepared. Resin-cast samples were subsequently acid-etched with 37% phosphoric acid prior to examination using scanning electron microscopy. Results Compared with mature bone, where the osteocytes were arranged in an ordered fashion, the osteocytes appeared less organized in the newly formed bone around the titanium implant. Further, a layer of mineralization with few organic components was observed on the implant surface. This study shows for the first time that osteocytes and their dendrites are directly connected with the implant surface. Conclusions: This study shows the direct anchorage of osteocytes via dendritic processes to a titanium implant surface in vivo. This suggests an important regulatory role for osteocytes and their lacunar-canalicular network in maintaining long-term osseointegration.
Resumo:
Objetivo Establecer una posible relación entre la fuerza (Jamar), el dolor (EVA) y la capacidad funcional referida por el paciente (DASH) determinando en qué grado influyen unas en otras. Estudio observacional transversal analítico. Participantes Muestra de 72 pacientes que presentaban una artrosis trapecio metacarpiana grado 2-3 de Eaton. Los pacientes fueron reclutados cuando acudían a la Unidad de Cirugía de mano. Método Se realizaron mediciones de fuerza de agarre, pinza, valoración del dolor y funcionalidad, y se establecieron las correlaciones entre cada una de ellas. Resultados El modelo más significativo para la función (R2 =0.83) incluye la variable dolor y la fuerza. Pero es la fuerza punta contra punta la que presenta una mayor correlación con el cuestionario DASH (B-estandarizado: –57). Respecto al dolor, influye en todas las mediciones de fuerza realizadas con el dinamómetro, siendo también la fuerza de la pinza punta contra punta la que presenta una mayor correlación. Conclusiones Los hallazgos corroboran que existe una correlación significativa entre la función referida por el paciente y variables que podemos medir en consulta, como la fuerza del puño y la pinza. Pero también esta correlación es significativa entre las variables función y dolor entre sí, pero es la pinza punta contra punta la que presenta una mayor asociación con el cuestionario DASH. Abstract in English Objective To assess the relationship between muscle strength (Jama), and pain (VAS) levels with hand function (DASH) in patients with trapeziometarcapal osteoarthritis. Cross-sectional study. Participants Sample of 72 patients with osteoarthritis stage 2-3 (Eaton) and trapeziometacarpal osteoarthritis. Patients were recruited when they came to the Hand Surgery Unit. Method Grip strength, pinch, pain and hand function were measured, and correlation and regression coefficients between them were obtained. Results For function, the most significant model (R2 = 0.83) included pain and strength. But it is tip to tip pinch force which has a stronger relationship with DASH (Standardized B: –57) questionnaire. Pain also influenced strength measured with the dynamometer but it was tip to tip pinch force that was the most affected. Conclusions Findings confirm that there is a significant correlation between function referred by the patient and variables that can be measured in the clinic such as grip strength and pinch. The correlation between pain intensity and function was also significant, but tip to tip pinch strength had the greatest impact on the function.
Resumo:
We usually find low levels of fitness condition affect other aspects of living for people with ID like dependency in carrying out activivities of daily living. Therefore we find high levels of dependency in activities of daily living due to poor fitness condition. The aim of the study is to explore the criterion validity of the Barthel index with a physical fitness test. An observational cross-sectional study was conducted. Data from the Barthel index and a physical fitness test were measured in 122 adults with intellectual disability. The data were analysed to find out the relationship between four categories of the physical fitness test and the Barthel index. It needs to be stressed that the correlations between the Barthel index and leg, abdominal and arm strength can confirm that these physical test are predictive of the Barthel index. The correlations between the balance variables as functional reach and single-leg stance with eyes open shown relationships with Barthel Index. We found important correlations between the physical fitness test and the Barthel index, so we can affirm that some physical fitness features are predictor variables of the Barthel index.
Resumo:
The NTRK1 gene (also known as TRKA) encodes a high-affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importantce of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower fractional anisotropy in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy-acommondiffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test reproducibility of results. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple-comparisons corrected: false discovery rate critical p=0.038 forNTRK1-Tand0.013 for rs4661063-A). In each half-sample, theNTRK1-T effectwasreplicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure.