564 resultados para Plant expression
Resumo:
Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Resumo:
Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.
Resumo:
FLOWERING LOCUS T (FT) and CENTRORADIALIS (CEN) homologs have been implicated in regulation of growth, determinacy and flowering. The roles of kiwifruit FT and CEN were explored using a combination of expression analysis, protein interactions, response to temperature in high-chill and low-chill kiwifruit cultivars and ectopic expression in Arabidopsis and Actinidia. The expression and activity of FT was opposite from that of CEN and incorporated an interaction with a FLOWERING LOCUS D (FD)-like bZIP transcription factor. Accumulation of FT transcript was associated with plant maturity and particular stages of leaf, flower and fruit development, but could be detected irrespective of the flowering process and failed to induce precocious flowering in transgenic kiwifruit. Instead, transgenic plants demonstrated reduced growth and survival rate. Accumulation of FT transcript was detected in dormant buds and stem in response to winter chilling. In contrast, FD in buds was reduced by exposure to cold. CEN transcript accumulated in developing latent buds, but declined before the onset of dormancy and delayed flowering when ectopically expressed in kiwifruit. Our results suggest roles for FT, CEN and FD in integration of developmental and environmental cues that affect dormancy, budbreak and flowering in kiwifruit.
Resumo:
Background Flavonoids such as anthocyanins, flavonols and proanthocyanidins, play a central role in fruit colour, flavour and health attributes. In peach and nectarine (Prunus persica) these compounds vary during fruit growth and ripening. Flavonoids are produced by a well studied pathway which is transcriptionally regulated by members of the MYB and bHLH transcription factor families. We have isolated nectarine flavonoid regulating genes and examined their expression patterns, which suggests a critical role in the regulation of flavonoid biosynthesis. Results In nectarine, expression of the genes encoding enzymes of the flavonoid pathway correlated with the concentration of proanthocyanidins, which strongly increases at mid-development. In contrast, the only gene which showed a similar pattern to anthocyanin concentration was UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT), which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. Expression of flavonol synthase (FLS1) correlated with flavonol levels, both temporally and in a tissue specific manner. The pattern of UFGT gene expression may be explained by the involvement of different transcription factors, which up-regulate flavonoid biosynthesis (MYB10, MYB123, and bHLH3), or repress (MYB111 and MYB16) the transcription of the biosynthetic genes. The expression of a potential proanthocyanidin-regulating transcription factor, MYBPA1, corresponded with proanthocyanidin levels. Functional assays of these transcription factors were used to test the specificity for flavonoid regulation. Conclusions MYB10 positively regulates the promoters of UFGT and dihydroflavonol 4-reductase (DFR) but not leucoanthocyanidin reductase (LAR). In contrast, MYBPA1 trans-activates the promoters of DFR and LAR, but not UFGT. This suggests exclusive roles of anthocyanin regulation by MYB10 and proanthocyanidin regulation by MYBPA1. Further, these transcription factors appeared to be responsive to both developmental and environmental stimuli.
Resumo:
Transient expression is a powerful method for the functional characterization of genes. In this chapter, we outline a protocol for the transient expression of constructs in Medicago truncatula leaves using Agrobacterium tumefaciens infiltration. Using quantitative real-time PCR we demonstrate that the infiltration of a construct containing the LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1) transcription factor results in the strong upregulation of key biosynthetic genes and the accumulation of anthocyanin pigment in the leaves after just 3 days. Thus, this method provides a rapid and powerful way to the discovery of downstream targets of M. truncatula transcription factors.
Resumo:
Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity.
Resumo:
Multiple copies of expression cassettes driven by the Trichoderma reesei xylanase 2 (xyn2) and cellobiohydrolase 2 (cbh2) promoters were introduced into the recombinant T. reesei EC-21 generated to express a thermostable Dictyoglomus thermophilum xylanase (XynB) under the egl2 promoter for further improvement of the enzyme yield. The transformants were screened based on increased XynB activity only. Multiple promoter transformant MPP-4 expressing the xynB gene under all the three promoters was found to be the highest producer of XynB, giving a 65% increase in yield compared to the parental single-promoter recombinant EC-21. The multiple-promoter transformant strains harboured six to nine copies of the xynB gene. Amongst the three promoters, egl2 seemed to have the strongest effect on XynB expression. The shotgun approach we used proved to be effective for rapid enhancement of protein expression using three promoters active at the near-neutral pH of the cultivation medium.
Resumo:
Expression vectors were constructed for Trichoderma reesei using the promoters, secretion signals and the modular structure of the efficiently expressed and secreted cellulase enzymes EGL2 (Cel5A) and CBH2 (Cel6A) as a prelude to establishing a platform where a gene of interest can be expressed under several promoters simultaneously. The designs featured (i) EGL2sigpro (egl2 promoter and secretion signal), (ii) EGL2cbmlin (egl2 promoter, secretion signal, EGL2 cellulose binding module and linker), (iii) CBH2sigpro (cbh2 promoter and secretion signal) and (iv) CBH2cbmlin (cbh2 promoter, secretion signal, CBH2 cellulose binding module and linker). Recombinant vectors were introduced individually into the high protein-secreting T. reesei RUT-C30 strain to generate single-promoter transformants expressing the Dictyoglomus thermophilum xynB gene that encodes a thermophilic xylanase enzyme (XynB). Ten transformants producing XynB representing each of the four different types of vectors were selected for further testing and the highest XynB production was achieved from a transformant containing 1–2 copies of the EGL2cbmlin vector. Best xylanase producers did not show any particular pattern in terms of the number of gene copies and their mode of integration into the chromosomal DNA. Transformants generated with the cbmlin-type vectors produced multiple forms of XynB which were decorated with various N- and O-glycans. One of the O-glycans was identified as hexuronic acid, whose presence had not been observed previously in the glycosylation patterns of T. reesei.
Resumo:
Trichoderma reesei Rut-C30 is used widely as an expression host for various gene products. We have explored cellular effects caused by the expression of a mutant form of cellobiohydrolase I (CBHI), the major secreted protein of T. reesei using biochemical and transcriptomic analyses and confocal laser scanning microscopy. The mutated CBHI was tagged fluorescently with Venus to establish the subcellular location of the fusion protein and its potential association with the proteasome, an organelle assigned for the disposal of misfolded proteins. Expression of the mutant CBHI in the high protein-secreting host Rut-C30 caused physiological changes in the fungal hyphae, affected protein secretion and elicited ER stress. A massive upregulation of UPR- and ERAD-related genes sec61, der1, uba1, bip1, pdi1, prp1, cxl1 and lhs1 was observed by qRT-PCR in the CBHIΔ4-Venus strain with four mutations introduced in the DNA encoding the core domain of CBHI. Further stress was applied to this strain by inhibiting function of the proteasome with MG132 (N-benzoylcarbonyl(Cbz)-Leu-Leu-leucinal). The effect of MG132 was found to be specific to the proteasome-associated genes. There are no earlier reports on the effect of proteasome inhibition on protein quality control in filamentous fungi. Confocal fluorescence microscopy studies suggested that the mutant CBHI accumulated in the ER and colocalized with the fungal proteasome. These results provide an indication that there is a limit to how far T. reesei Rut-C30, already under secretion stress, can be pressed to produce higher protein yields.
Resumo:
Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.
Resumo:
Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.
Resumo:
Binary Ti vectors are the plasmid vectors of choice in Agrobacterium-mediated plant transformation protocols. The pGreen series of binary Ti vectors are configured for ease-of-use and to meet the demands of a wide range of transformation procedures for many plant species. This plasmid system allows any arrangement of selectable marker and reporter gene at the right and left T-DNA borders without compromising the choice of restriction sites for cloning, since the pGreen cloning sites are based on the well-known pBluescript general vector plasmids. Its size and copy number in Escherichia coli offers increased efficiencies in routine in vitro recombination procedures. pGreen can replicate in Agrobacterium only if another plasmid, pSoup, is co-resident in the same strain. pSoup provides replication functions in trans for pGreen. The removal of RepA and Mob functions has enabled the size of pGreen to be kept to a minimum. Versions of pGreen have been used to transform several plant species with the same efficiencies as other binary Ti vectors. Information on the pGreen plasmid system is supplemented by an Internet site (http://www.pgreen.ac.uk) through which comprehensive information, protocols, order forms and lists of different pGreen marker gene permutations can be found.
Resumo:
Much of the diversity of anthocyanins is due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. We identified two glycosyltransferases, F3GT1 and F3GGT1, from red-fleshed kiwifruit (Actinidia chinensis) that perform sequential glycosylation steps. Red-fleshed genotypes of kiwifruit accumulate anthocyanins mainly in the form of cyanidin 3-O-xylo-galactoside. Genes in the anthocyanin and flavonoid biosynthetic pathway were identified and shown to be expressed in fruit tissue. However, only the expression of the glycosyltransferase F3GT1 was correlated with anthocyanin accumulation in red tissues. Recombinant enzyme assays in vitro and in vivo RNA interference (RNAi) demonstrated the role of F3GT1 in the production of cyanidin 3-O-galactoside. F3GGT1 was shown to further glycosylate the sugar moiety of the anthocyanins. This second glycosylation can affect the solubility and stability of the pigments and modify their colour. We show that recombinant F3GGT1 can catalyse the addition of UDP-xylose to cyanidin 3-galactoside. While F3GGT1 is responsible for the end-product of the pathway, F3GT1 is likely to be the key enzyme regulating the accumulation of anthocyanin in red-fleshed kiwifruit varieties.
Resumo:
The introduction of chalcone synthase A transgenes into petunia plants can result in degradation of chalcone synthase A RNAs and loss of chalcone synthase, a process called cosuppression or post-transcriptional gene silencing. Here we show that the RNA degradation is associated with changes in premRNA processing, i.e. loss of tissue specificity in transcript cleavage patterns, accumulation of unspliced molecules, and use of template-specific secondary poly(A) sites. These changes can also be observed at a lower level in leaves but not flowers of nontransgenic petunias. Based on this, a model is presented of how transgenes may disturb the carefully evolved, developmentally controlled post-transcriptional regulation of chalcone synthase gene expression by influencing the survival rate of the endogenous and their own mRNA.
Resumo:
Anthocyanin concentration is an important determinant of the colour of many fruits. In apple (Malus x domestica), centuries of breeding have produced numerous varieties in which levels of anthocyanin pigment vary widely and change in response to environmental and developmental stimuli. The apple fruit cortex is usually colourless, although germplasm does exist where the cortex is highly pigmented due to the accumulation of either anthocyanins or carotenoids. From studies in a diverse array of plant species, it is apparent that anthocyanin biosynthesis is controlled at the level of transcription. Here we report the transcript levels of the anthocyanin biosynthetic genes in a red-fleshed apple compared with a white-fleshed cultivar. We also describe an apple MYB transcription factor, MdMYB10, that is similar in sequence to known anthocyanin regulators in other species. We further show that this transcription factor can induce anthocyanin accumulation in both heterologous and homologous systems, generating pigmented patches in transient assays in tobacco leaves and highly pigmented apple plants following stable transformation with constitutively expressed MdMYB10. Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, MdbHLH3 and MdbHLH33. The strong correlation between the expression of MdMYB10 and apple anthocyanin levels during fruit development suggests that this transcription factor is responsible for controlling anthocyanin biosynthesis in apple fruit; in the red-fleshed cultivar and in the skin of other varieties, there is an induction of MdMYB10 expression concurrent with colour formation during development. Characterization of MdMYB10 has implications for the development of new varieties through classical breeding or a biotechnological approach.