415 resultados para Non-Fourier heat conduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Education in the 21st century demands a model for understanding a new culture of learning in the face of rapid change, open access data and geographical diversity. Teachers no longer need to provide the latest information because students themselves are taking an active role in peer collectives to help create it. This paper examines, through an Australian case study entitled ‘Design Minds’, the development of an online design education platform as a key initiative to enact a government priority for state-wide cultural change through design-based curriculum. Utilising digital technology to create a supportive community, ‘Design Minds’ recognises that interdisciplinary learning fostered through engagement will empower future citizens to think, innovate, and discover. This paper details the participatory design process undertaken with multiple stakeholders to create the platform. It also outlines a proposed research agenda for future measurement of its value in creating a new learning culture, supporting regional and remote communities, and revitalising frontline services. It is anticipated this research will inform ongoing development of the online platform, and future design education and research programs in K-12 schools in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyper-pigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parabolic Trough Concentrators (PTC) are the most proven solar collectors for solar thermal power plants, and are suitable for concentrating photovoltaic (CPV) applications. PV cells are sensitive to spatial uniformity of incident light and the cell operating temperature. This requires the design of CPV-PTCs to be optimised both optically and thermally. Optical modelling can be performed using Monte Carlo Ray Tracing (MCRT), with conjugate heat transfer (CHT) modelling using the computational fluid dynamics (CFD) to analyse the overall designs. This paper develops and evaluates a CHT simulation for a concentrating solar thermal PTC collector. It uses the ray tracing work by Cheng et al. (2010) and thermal performance data for LS-2 parabolic trough used in the SEGS III-VII plants from Dudley et al. (1994). This is a preliminary step to developing models to compare heat transfer performances of faceted absorbers for concentrating photovoltaic (CPV) applications. Reasonable agreement between the simulation results and the experimental data confirms the reliability of the numerical model. The model explores different physical issues as well as computational issues for this particular kind of system modeling. The physical issues include the resultant non-uniformity of the boundary heat flux profile and the temperature profile around the tube, and uneven heating of the HTF. The numerical issues include, most importantly, the design of the computational domain/s, and the solution techniques of the turbulence quantities and the near-wall physics. This simulation confirmed that optical simulation and the computational CHT simulation of the collector can be accomplished independently.