444 resultados para Genetic marker
Resumo:
MADAM, Androgenetic alopecia (AGA) is a common age-dependent trait, characterized by a progressive loss of hair from the scalp. The hair loss may commence during puberty and up to 80% of white men experience some degree of AGA during their lifetime.1 Research has established that two essential aetiological factors for AGA are a genetic predisposition and the presence of androgens (male sex hormones).1,2 A recent meta-analysis of genome-wide association studies (GWAS) has increased the number of identified loci associated with this trait at the molecular level to a total of eight.3 However, despite these successes, a large fraction of the genetic contribution remains to be identified. One way to identify further genetic loci is to combine the resource of GWAS datasets with knowledge about specific biological factors likely to be involved in the development of disease. The focused evaluation of a limited number of candidate genes in GWAS datasets avoids the necessity for extensive correction for multiple testing, which typically limits the power for detecting genetic loci at a genome-wide level.4 Because the presence of genetic association suggests that candidate genes are likely to operate early in the causative chain of events leading to the phenotype, this approach may also function to favour biological pathways for their importance in the development of AGA.
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 x 10(-8)
genetic evidence supporting an involvement of WNT signaling in AGA development.
Resumo:
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 +/- 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 +/- 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 +/- 0.06 s.e.), and ADHD and major depressive disorder (0.32 +/- 0.07 s.e.), low between schizophrenia and ASD (0.16 +/- 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Resumo:
Serum gamma-glutamyl transferase (GGT) activity is a marker of liver disease which is also prospectively associated with the risk of all-cause mortality, cardiovascular disease, type 2 diabetes and cancers. We have discovered novel loci affecting GGT in a genome-wide association study (rs1497406 in an intergenic region of chromosome 1, P = 3.9 x 10(-8); rs944002 in C14orf73 on chromosome 14, P = 4.7 x 10(-13); rs340005 in RORA on chromosome 15, P = 2.4 x 10(-8)), and a highly significant heterogeneity between adult and adolescent results at the GGT1 locus on chromosome 22 (maximum P(HET) = 5.6 x 10(-12) at rs6519520). Pathway analysis of significant and suggestive single-nucleotide polymorphism associations showed significant overlap between genes affecting GGT and those affecting common metabolic and inflammatory diseases, and identified the hepatic nuclear factor (HNF) family as controllers of a network of genes affecting GGT. Our results reinforce the disease associations of GGT and demonstrate that control by the GGT1 locus varies with age.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of approximately 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Association mapping seeks to identify marker alleles present at significantly different frequencies in cases carrying a particular disease or trait compared with controls. Genome-wide association studies are increasingly replacing candidate gene-based association studies for complex diseases, where a number of loci are likely to contribute to disease risk and the effect size of each particular risk allele is typically modest or low. Good study design is essential to the success of an association study, and factors such as the heritability of the disease under investigation, the choice of controls, statistical power, multiple testing and whether the association can be replicated need to be considered before beginning. Likewise, thorough quality control of the genotype data needs to be undertaken prior to running any association analyses. Finally, it should be kept in mind that a significant genetic association is not proof positive that a particular genetic locus causes a disease, but rather an important first step in discovering the genetic variants underlying a complex disease.
Resumo:
The relationship between major depressive disorder (MDD) and bipolar disorder (BD) remains controversial. Previous research has reported differences and similarities in risk factors for MDD and BD, such as predisposing personality traits. For example, high neuroticism is related to both disorders, whereas openness to experience is specific for BD. This study examined the genetic association between personality and MDD and BD by applying polygenic scores for neuroticism, extraversion, openness to experience, agreeableness and conscientiousness to both disorders. Polygenic scores reflect the weighted sum of multiple single-nucleotide polymorphism alleles associated with the trait for an individual and were based on a meta-analysis of genome-wide association studies for personality traits including 13,835 subjects. Polygenic scores were tested for MDD in the combined Genetic Association Information Network (GAIN-MDD) and MDD2000+ samples (N=8921) and for BD in the combined Systematic Treatment Enhancement Program for Bipolar Disorder and Wellcome Trust Case-Control Consortium samples (N=6329) using logistic regression analyses. At the phenotypic level, personality dimensions were associated with MDD and BD. Polygenic neuroticism scores were significantly positively associated with MDD, whereas polygenic extraversion scores were significantly positively associated with BD. The explained variance of MDD and BD, approximately 0.1%, was highly comparable to the variance explained by the polygenic personality scores in the corresponding personality traits themselves (between 0.1 and 0.4%). This indicates that the proportions of variance explained in mood disorders are at the upper limit of what could have been expected. This study suggests shared genetic risk factors for neuroticism and MDD on the one hand and for extraversion and BD on the other.
Resumo:
BACKGROUND: The tendency to conceive dizygotic (DZ) twins is a complex trait influenced by genetic and environmental factors. To search for new candidate loci for twinning, we conducted a genome-wide linkage scan in 525 families using microsatellite and single nucleotide polymorphism marker panels. METHODS AND RESULTS: Non-parametric linkage analyses, including 523 families containing a total of 1115 mothers of DZ twins (MODZT) from Australia and New Zealand (ANZ) and The Netherlands (NL), produced four linkage peaks above the threshold for suggestive linkage, including a highly suggestive peak at the extreme telomeric end of chromosome 6 with an exponential logarithm of odds \[(exp)LOD] score of 2.813 (P = 0.0002). Since the DZ twinning rate increases steeply with maternal age independent of genetic effects, we also investigated linkage including only families where at least one MODZT gave birth to her first set of twins before the age of 30. These analyses produced a maximum expLOD score of 2.718 (P = 0.0002), largely due to linkage signal from the ANZ cohort, however, ordered subset analyses indicated this result is most likely a chance finding in the combined dataset. Linkage analyses were also performed for two large DZ twinning families from the USA, one of which produced a peak on chromosome 2 in the region of two potential candidate genes. Sequencing of FSHR and FIGLA, along with INHBB in MODZTs from two large NL families with family specific linkage peaks directly over this gene, revealed a potentially functional variant in the 5' untranslated region of FSHR that segregated with the DZ twinning phenotype in the Utah family. CONCLUSION: Our data provide further evidence for complex inheritance of familial DZ twinning.
Resumo:
We examined the co-occurrence of migraine and endometriosis within the largest known collection of families containing multiple women with surgically confirmed endometriosis and in an independent sample of 815 monozygotic and 457 dizygotic female twin pairs. Within the endometriosis families, a significantly increased risk of migrainous headache was observed in women with endometriosis compared to women without endometriosis (odds ratio [OR] 1.57, 95% confidence interval [CI]: 1.12-2.21, P=0.009). Bivariate heritability analyses indicated no evidence for common environmental factors influencing either migraine or endometriosis but significant genetic components for both traits, with heritability estimates of 69 and 49%, respectively. Importantly, a significant additive genetic correlation (r(G) = 0.27, 95% CI: 0.06-0.47) and bivariate heritability (h(2)=0.17, 95% CI: 0.08-0.27) was observed between migraine and endometriosis. Controlling for the personality trait neuroticism made little impact on this association. These results confirm the previously reported comorbidity between migraine and endometriosis and indicate common genetic influences completely explain their co-occurrence within individuals. Given pharmacological treatments for endometriosis typically target hormonal pathways and a number of findings provide support for a relationship between hormonal variations and migraine, hormone-related genes and pathways are highly plausible candidates for both migraine and endometriosis. Therefore, taking into account the status of both migraine and endometriosis may provide a novel opportunity to identify the genes underlying them. Finally, we propose that the analysis of such genetically correlated comorbid traits can increase power to detect genetic risk loci through the use of more specific, homogenous and heritable phenotypes.
Resumo:
Handedness refers to a consistent asymmetry in skill or preferential use between the hands and is related to lateralization within the brain of other functions such as language. Previous twin studies of handedness have yielded inconsistent results resulting from a general lack of statistical power to find significant effects. Here we present analyses from a large international collaborative study of handedness (assessed by writing/drawing or self report) in Australian and Dutch twins and their siblings (54,270 individuals from 25,732 families). Maximum likelihood analyses incorporating the effects of known covariates (sex, year of birth and birth weight) revealed no evidence of hormonal transfer, mirror imaging or twin specific effects. There were also no differences in prevalence between zygosity groups or between twins and their singleton siblings. Consistent with previous meta-analyses, additive genetic effects accounted for about a quarter (23.64%) of the variance (95%CI 20.17, 27.09%) with the remainder accounted for by non-shared environmental influences. The implications of these findings for handedness both as a primary phenotype and as a covariate in linkage and association analyses are discussed.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
BACKGROUND Tumour necrosis factor (TNF) is a pleiotropic cytokine with a wide range of immunoregulatory effects. Variation in the promoter region of TNF and the neighbouring lymphotoxin alpha (LTA) gene might be associated with endometriosis. METHODS We examined the association between endometriosis and common single-nucleotide polymorphisms (SNPs) or haplotypes in the TNF/LTA region in an Australian sample by analysing 26 SNPs in 958 endometriosis cases and 959 unrelated controls. We selected functional SNPs in the coding and the promoter region of the TNF gene and HapMap tagging SNPs and typed them on a Sequenom MassARRAY platform. A key SNP (rs1800630) in the promoter region typed in previous studies did not give reliable results. Therefore, we also examined a statistically identical (r(2) = 1) SNP (siSNP) (rs2844482), identified using the web based program ssSNPer. RESULTS Genotype completion rate was 99.5% for SNPs spanning a region of 15.5 kb across the TNF/LTA locus. There was no evidence for association between endometriosis and TNF/LTA SNPs or SNP haplotypes in our case-control study. CONCLUSIONS Our data suggest both TNF and LTA genes are not major susceptibility genes for endometriosis.
ssSNPer: identifying statistically similar SNPs to aid interpretation of genetic association studies
Resumo:
ssSNPer is a novel user-friendly web interface that provides easy determination of the number and location of untested HapMap SNPs, in the region surrounding a tested HapMap SNP, which are statistically similar and would thus produce comparable and perhaps more significant association results. Identification of ssSNPs can have crucial implications for the interpretation of the initial association results and the design of follow-up studies. AVAILABILITY: http://fraser.qimr.edu.au/general/daleN/ssSNPer/