425 resultados para Experimental watershed areas
Resumo:
Physical and chemical properties of biofuels vary among various feedstocks and their subsequent conversions to fuels. The biofuels contain various amounts of oxygen, and this has a significant influence on exhaust emission. This oxygen content has been considered in order to investigate its effect on diesel engine exhaust emissions. The experiments have been conducted with a heavy duty diesel engine and various oxygenated fuels. It is found that the amount of oxygen in the fuel has a high level of influence on its exhaust emissions, and this provides agreement with diesel emissions results such as PN reduction. By increasing the amount of oxygen in the blend (by adding more biofuel), the particulate number (PN) is reduced and NOx increases gradually. However, the variation of PN and NOx are not similar for waste cooking biodiesel (WCBD) and butanol blend, even though their oxygen content are the same in the blends. This is due to the source of the biofuel and their internal chemistry.
Resumo:
This paper presents the results of an experimental and numerical program to investigate the circular hollow section (CHS) beams, strengthened using Carbon Fibre Reinforced Polymer (CFRP) sheets. The circular hollow shaped steel beams bonded with different CFRP layer orientations were tested under four-point bending. The mid-span deflection, service load and failure load were recorded. The LHL (where L, first inner longitudinal layer, H, second hoop layer and L, third outer longitudinal layer) and LLH (where L, first inner longitudinal layer, L, second longitudinal layer and H, third outer hoop layer) layer oriented strengthened beams perform slightly better than HHL (where H, first inner hoop layer, H, second hoop layer and L, third outer longitudinal layer) layer oriented strengthened beams. The LHL and LLH layer oriented treated beams showed very similar structural behaviour. Numerical analyses were then conducted on the CFRP strengthened steel CHS beams. The validity of the models has been assessed by comparing the failure loads and mid-span deflections. The effects of various parameters such as bond length, section types, tensile modulus of CFRP, adhesive layer thickness and adhesive types have been studied.
Resumo:
This thesis introduces a new animal model, kangaroo, to biomechanical investigations of shoulder cartilage research. It examines the effect of cartilage structure and constituents on tissue behavior and its adaptation to mechanical loading. In doing so, the study explains the relationship of tissue's functional behaviors to its structure and constituents which has important implications for tissue engineering strategies catering joint specific cartilage tissue generation.
Resumo:
Background There has been considerable publicity regarding population ageing and hospital emergency department (ED) overcrowding. Our study aims to investigate impact of one intervention piloted in Queensland Australia, the Hospital in the Nursing Home (HiNH) program, on reducing ED and hospital attendances from residential aged care facilities (RACFs). Methods A quasi-experimental study was conducted at an intervention hospital undertaking the program and a control hospital with normal practice. Routine Queensland health information system data were extracted for analysis. Results Significant reductions in the number of ED presentations per 1000 RACF beds (rate ratio (95 % CI): 0.78 (0.67–0.92); p = 0.002), number of hospital admissions per 1000 RACF beds (0.62 (0.50–0.76); p < 0.0001), and number of hospital admissions per 100 ED presentations (0.61 (0.43–0.85); p = 0.004) were noticed in the experimental hospital after the intervention; while there were no significant differences between intervention and control hospitals before the intervention. Pre-test and post-test comparison in the intervention hospital also presented significant decreases in ED presentation rate (0.75 (0.65–0.86); p < 0.0001) and hospital admission rate per RACF bed (0.66 (0.54–0.79); p < 0.0001), and a non-significant reduction in hospital admission rate per ED presentation (0.82 (0.61–1.11); p = 0.196). Conclusions Hospital in the Nursing Home program could be effective in reducing ED presentations and hospital admissions from RACF residents. Implementation of the program across a variety of settings is preferred to fully assess the ongoing benefits for patients and any possible cost-savings.
Resumo:
This thesis makes a significant contribution to knowledge and understanding of 'Human Travel Behaviour' in relation to transportation research. It holds some important merits that have not been proposed before. It develops a new, comprehensive and meaningful relationship that includes bus transit ridership change due to weather variables, seasonality and transit quality of service within a single daily ridership rate estimation model. The research incorporated both temporal and spatial influences on ridership within a modelling structure, named as the Nested Model Structure. It provides a complete picture of ridership variation across the sub-tropical city of Brisbane, Australia.
Resumo:
High concentrations of nitrate-nitrogen degrade the quality of aquatic environments. The primary mechanism by which nitrate-nitrogen is removed (denitrification) requires anoxic conditions and electron donors. While removal of total and ammonium-nitrogen is often high in stormwater biofilters, poor removal or even the release of nitrate-nitrogen in the outflow has often been observed. Five Perspex biofilter columns (94 mm internal diameter) were fabricated with a filter layer that contained 8% organic material. Columns were operated at 875 mm/h 875 mm/h and fed with simulated stormwater with different antecedent dry days (ADDs) and concentrations of nitrate-nitrogen. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for nitrate-nitrogen. The removal of nitrate-nitrogen varied during an event from a high removal percentage (60–90%) in the initial outflow that gradually decreased in the first 30 min and settled at 0–15% removal thereafter. This remained consistent during all simulated events independent of the number of ADDs or inflow concentrations. ADDs and previous event feed concentrations affected the outflow nitrate-nitrogen concentration in the first 30 min of the current event. Therefore, from this study it is concluded that denitrification within stormwater biofilters occurs mainly during drying periods rather than wetting periods.
Resumo:
Although paying taxes is a key element of a well-functioning society, there is still limited understanding as to why people actually pay their taxes. Models emphasizing that taxpayers make strategic, financially motivated compliance decisions seemingly assume an overly restrictive view of human nature. Law abidance may be more accurately explained by social norms, a concept that has gained growing importance as research attempts to understand the tax compliance puzzle. This study analyzes the influence of psychic stress generated by the possibility of breaking social norms in the tax compliance context. We measure psychic stress using heart rate variability (HRV), which captures the psychobiological or neural equivalents of psychic stress that may arise from the contemplation of real or imagined actions, producing immediate physiologic discomfort. The results of our laboratory experiments provide empirical evidence of a positive correlation between psychic stress and tax compliance, thus underscoring the importance of moral sentiments for tax compliance. We also identify three distinct types of individuals who differ in their levels of psychic stress, tax morale, and tax compliance.
Resumo:
Credence goods markets suffer from inefficiencies caused by superior information of sellers about the surplus-maximising quality. While standard theory predicts that equal mark-up prices solve the credence goods problem if customers can verify the quality received, experimental evidence indicates the opposite. We identify a lack of robustness with respect to heterogeneity in social preferences as a possible cause of this and conduct new experiments that allow for parsimonious identification of sellers’ social preference types. Our results confirm the assumed heterogeneity in social preferences and provide strong support for our explanation of the failure of verifiability to increase efficiency.
Resumo:
In the context of increasing threats to the sensitive marine ecosystem by toxic metals, this study investigated the metal build-up on impervious surfaces specific to commercial seaports. The knowledge generated in this study will contribute to managing toxic metal pollution of the marine ecosystem. The study found that inter-modal operations and main access roadway had the highest loads followed by container storage and vehicle marshalling sites, while the quay line and short term storage areas had the lowest. Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As such, treatment options based on solids retention can be effective for some metal species, while ineffective for other species. Furthermore, Cu and Zn are more likely to become bioavailable in seawater due to their strong association with nutrients. Mathematical models to replicate the metal build-up process were also developed using experimental design approach and partial least square regression. The models for Cr and Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, but could be employed for preliminary investigations.
Resumo:
Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction 6 industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable 7 research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under 8 end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design 9 standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they 10 are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling 11 behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the 12 predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are 13 very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were 14 proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do 15 not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM 16 format using the test results and buckling analyses using finite-element analyses.
Resumo:
LiteSteel beam (LSB) is a hollow flange channel made from cold-formed steel using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. LSBs are currently used as floor joists and bearers in buildings. However, there are no appropriate design standards available due to its unique hollow flange geometry, residual stress characteristics and initial geometric imperfections arising from manufacturing processes. Recent research studies have focused on investigating the structural behaviour of LSBs under pure bending, predominant shear and combined actions. However, web crippling behaviour and strengths of LSBs still need to be examined. Therefore, an experimental study was undertaken to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 23 web crippling tests were performed and the results were compared with the current AS/NZS 4600 and AISI S100 design standards, which showed that the cold-formed steel design rules predicted the web crippling capacity of LSB sections very conservatively under EOF and IOF load cases. Therefore, suitably improved design equations were proposed to determine the web crippling capacity of LSBs based on experimental results. In addition, new design equations were also developed under the Direct Strength Method format. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases and the results.
Resumo:
This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.