407 resultados para Electronic structures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is noticed as electrons are transferred to form a strong contact with the reduced graphene support. The missing metallic state associated with the unsaturated atoms at the peripheral sites in turn modifies the hydrogen evolution activity. The easiest evolution path is from the Mo edge sites, with the presence of the graphene resulting in a decrease in the energy barrier from 0.17 to 0.11 eV. Evolution of H2 from the S edge becomes more difficult due to an increase in the energy barrier from 0.43 to 0.84 eV. The clarification of the chemical bonding and catalytic mechanisms for hydrogen evolution using this strongly coupled MoS2/graphene nanocatalyst provide a valuable source of reference and motivation for further investigation for improved hydrogen evolution using chemically active nanocoupled systems.