500 resultados para Dynamic Stiffness Matrix
Resumo:
Although urbanization can promote social and economic development, it can also cause various problems. As the key decision makers of urbanization, local governments should be able to evaluate urbanization performance, summarize experiences, and find problems caused by urbanization. This paper introduces a hybrid Entropy–McKinsey Matrix method for evaluating sustainable urbanization. The McKinsey Matrix is commonly referred to as the GE Matrix. The values of a development index (DI) and coordination index (CI) are calculated by employing the Entropy method and are used as a basis for constructing a GE Matrix. The matrix can assist in assessing sustainable urbanization performance by locating the urbanization state point. A case study of the city of Jinan in China demonstrates the process of using the evaluation method. The case study reveals that the method is an effective tool in helping policy makers understand the performance of urban sustainability and therefore formulate suitable strategies for guiding urbanization toward better sustainability.
Resumo:
In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.
Resumo:
Typical Inductive Power Transfer (IPT) systems employ two power conversion stages to generate a high frequency current from low frequency utility supply. This paper proposes a matrix converter based IPT system that facilitates the generation of high frequency current through a single power conversion stage. The proposed matrix converter topology transforms a 3-phase low frequency voltage system to a high frequency single phase voltage which in turn powers a series compensated IPT system. A comprehensive mathematical model is developed to investigate the behavior of the proposed IPT topology. Theoretical results are presented in comparison to simulations, which are performed in Matlab/ Simulink, to demonstrate the applicability of the proposed concept and the validity of the developed model.
Resumo:
Dual-active bridges (DABs) can be used to deliver isolated and bidirectional power to electric vehicles (EVs) or to the grid in vehicle-to-grid (V2G) applications. However, such a system essentially requires a two-stage power conversion process, which significantly increases the power losses. Furthermore, the poor power factor associated with DAB converters further reduces the efficiency of such systems. This paper proposes a novel matrix converter based resonant DAB converter that requires only a single-stage power conversion process to facilitate isolated bi-directional power transfer between EVs and the grid. The proposed converter comprises a matrix converter based front end linked with an EV side full-bridge converter through a high frequency isolation transformer and a tuned LCL network. A mathematical model, which predicts the behavior of the proposed system, is presented to show that both the magnitude and direction of the power flow can be controlled through either relative phase angle or magnitude modulation of voltages produced by converters. Viability of the proposed concept is verified through simulations. The proposed matrix converter based DAB, with a single power conversion stage, is low in cost, and suites charging and discharging in single or multiple EVs or V2G applications.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
An offshore wind turbine usually has the grid step-up transformer integrated in the nacelle. This increases mechanical loading of the tower. In that context, a transformer-less, high voltage, highly-reliable and compact converter system for nacelle installation would be an attractive solution for large offshore wind turbines. This paper, therefore, presents a transformer-less grid integration topology for PMSG based large wind turbine generator systems using modular matrix converters. Each matrix converter module is fed from three generator coils of the PMSG which are phase shifted by 120°. Outputs of matrix converter modules are connected in series to increase the output voltage and thus eliminate the need of a coupling step-up transformer. Moreover, dc-link capacitors found in conventional back-to-back converter topologies are eliminated in the proposed system. Proper multilevel output voltage generation and power sharing between converter modules are achieved through an advanced switching strategy. Simulation results are presented to validate the proposed modular matrix converter system, modulation method and control techniques.
Resumo:
This project examined the differences in healing of metaphyseal bone, when the implants of variable stiffness are used for fracture fixation. This knowledge is important in development of novel orthopaedic implants, used in orthopaedic surgery to stabilise the fractures. Dr Koval used a mouse model to create a fracture, and then assessed its healing with a combination of mechanical testing, microcomputed tomography and histomorphometric examination.
Resumo:
This thesis addressed issues that have prevented qualitative researchers from using thematic discovery algorithms. The central hypothesis evaluated whether allowing qualitative researchers to interact with thematic discovery algorithms and incorporate domain knowledge improved their ability to address research questions and trust the derived themes. Non-negative Matrix Factorisation and Latent Dirichlet Allocation find latent themes within document collections but these algorithms are rarely used, because qualitative researchers do not trust and cannot interact with the themes that are automatically generated. The research determined the types of interactivity that qualitative researchers require and then evaluated interactive algorithms that matched these requirements. Theoretical contributions included the articulation of design guidelines for interactive thematic discovery algorithms, the development of an Evaluation Model and a Conceptual Framework for Interactive Content Analysis.
Resumo:
There is substantial evidence for facial emotion recognition (FER) deficits in autism spectrum disorder (ASD). The extent of this impairment, however, remains unclear, and there is some suggestion that clinical groups might benefit from the use of dynamic rather than static images. High-functioning individuals with ASD (n = 36) and typically developing controls (n = 36) completed a computerised FER task involving static and dynamic expressions of the six basic emotions. The ASD group showed poorer overall performance in identifying anger and disgust and were disadvantaged by dynamic (relative to static) stimuli when presented with sad expressions. Among both groups, however, dynamic stimuli appeared to improve recognition of anger. This research provides further evidence of specific impairment in the recognition of negative emotions in ASD, but argues against any broad advantages associated with the use of dynamic displays.
Resumo:
Because moving depictions of face emotion have greater ecological validity than their static counterparts, it has been suggested that still photographs may not engage ‘authentic’ mechanisms used to recognize facial expressions in everyday life. To date, however, no neuroimaging studies have adequately addressed the question of whether the processing of static and dynamic expressions rely upon different brain substrates. To address this, we performed an functional magnetic resonance imaging (fMRI) experiment wherein participants made emotional expression discrimination and Sex discrimination judgements to static and moving face images. Compared to Sex discrimination, Emotion discrimination was associated with widespread increased activation in regions of occipito-temporal, parietal and frontal cortex. These regions were activated both by moving and by static emotional stimuli, indicating a general role in the interpretation of emotion. However, portions of the inferior frontal gyri and supplementary/pre-supplementary motor area showed task by motion interaction. These regions were most active during emotion judgements to static faces. Our results demonstrate a common neural substrate for recognizing static and moving facial expressions, but suggest a role for the inferior frontal gyrus in supporting simulation processes that are invoked more strongly to disambiguate static emotional cues.