574 resultados para CRESTAL BONE LEVELS
Resumo:
Cough associated with exertion is often used as a surrogate marker of asthma. However, to date there are no studies that have objectively measured cough in association with exercise in children. Our primary aim was to examine whether children with a pre-existing cough have an increase in cough frequency during and post-exercise. We hypothesized that children with any coughing illness will have an increase in cough frequency post-exercise regardless of the presence of exercise-induced broncho-constriction (EIB) or atopy. In addition, we hypothesized that Fractional exhaled nitric oxide (FeNO) levels decreases post-exercise regardless of the presence of EIB or atopy. Children with chronic cough and a control group without cough undertook an exercise challenge, FeNO measurements and a skin prick test, and wore a 24-h voice recorder to objectively measure cough frequency. The association between recorded cough frequency, exercise, atopy, and presence of EIB was tested. We also determined if the change in FeNO post exercise related to atopy or EIB. Of the 50 children recruited (35 with cough, 15 control), 7 had EIB. Children with cough had a significant increase in cough counts (median 7.0, inter-quartile ranges, 0.5, 24.5) compared to controls (2.0, IQR 0, 5.0, p = 0.028) post-exercise. Presence of atopy or EIB did not influence cough frequency. FeNO level was significantly lower post-exercise in both groups but the change was not influenced by atopy or EIB. Cough post-exertion is likely a generic response in children with a current cough. FeNO level decreases post-exercise irrespective of the presence of atopy or EIB. A larger study is necessary confirm or refute our findings.
Resumo:
Objective To objectively measure the physical activity (PA) levels of children attending family day care programs. Methods A total of 114 children from 47 family day care centers wore an accelerometer for the duration of their time in care. Time in moderate-to-vigorous PA (MVPA) and total PA was calculated using previously validated cut points. Results Children accumulated 5.8 ± 3.2 minutes of MVPA and 10.4 ± 4.4 minutes of total PA per hour of attendance. Boys exhibited significantly higher levels of PA than girls. Among healthy weight children, 4- and 5-year-olds exhibited significantly higher levels of PA than 2- and 3-year-olds. Overweight and obese 4- and 5-year-olds exhibited significantly lower levels of PA than their healthy weight counterparts. Conclusions and Implications Children attending family day care participate in low levels of PA during the child care day. The results highlight the need for effective programs to promote PA in family day care.
Resumo:
This study was undertaken to investigate any relationship between sensory features and neck pain in female office workers using quantitative sensory measures to better understand neck pain in this group. Office workers who used a visual display monitor for more than four hours per day with varying levels of neck pain and disability were eligible for inclusion. There were 85 participants categorized according to their scores on the neck disability index (NDI): 33 with no pain (NDI < 8); 38 with mild levels of pain and disability (NDI 9–29); 14 with moderate levels of pain (NDI ⩾ 30). A fourth group of women without neck pain (n = 22) who did not work formed the control group. Measures included: thermal pain thresholds over the posterior cervical spine; pressure pain thresholds over the posterior neck, trapezius, levator scapulae and tibialis anterior muscles, and the median nerve trunk; sensitivity to vibrotactile stimulus over areas of the hand innervated by the median, ulnar and radial nerves; sympathetic vasoconstrictor response. All tests were conducted bilaterally. ANCOVA models were used to determine group differences between the means for each sensory measure. Office workers with greater self-reported neck pain demonstrated hyperalgesia to thermal stimuli over the neck, hyperalgesia to pressure stimulation over several sites tested; hypoaesthesia to vibration stimulation but no changes in the sympathetic vasoconstrictor response. There is evidence of multiple peripheral nerve dysfunction with widespread sensitivity most likely due to altered central nociceptive processing initiated and sustained by nociceptive input from the periphery.
Resumo:
This study investigated the effects of workload, control, and general self-efficacy on affective task reactions (i.e., demands-ability fit, active coping, and anxiety) during a work simulation. The main goals were: (1) to determine the extent general self-efficacy moderates the effects of demand and control on affective task reactions, and; (2) to determine if this varies as a function of changes in workload. Participants (N=141) completed an inbox activity under conditions of low or high control and within low and high workload conditions. The order of trials varied so that workload increased or decreased. Results revealed individuals with high general self-efficacy reported better demands-abilities fit and active coping as well as less anxiety. Three interactive effects were found. First, it was found that high control increased demands-abilities fit from trial 1 to trial 2, but only when workload decreased. Second, it was found that low efficacious individuals active coping increased in trial 2, but only under high control. Third, it was found that high control helped high efficacious individuals manage anxiety when workload decreased. However, for individuals with low general self-efficacy, neither high nor low control alleviated anxiety (i.e., whether workload increased or decreased over time).
Resumo:
Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.
Resumo:
Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.
Resumo:
Although tissue inhibitor of metalloproteinase-2 (TIMP-2) is known to be not only an inhibitor of matrix metalloproteinases (MMP) but also a cofactor for membrane-type 1 MMP (MT1-MMP)-mediated MMP-2 activation, it is still unclear how TIMP-2 regulates MMP-2 activation and cleavage of substrates by MT1-MMP. In the present study we examined the levels of cell-surface MT1-MMP, MMP-2 activation and cleavage of MT1-MMP substrates in 293T cells transfected with the MT1-MMP and TIMP-2 genes. Co-expression of TIMP-2 at an appropriate level increased the level of cell-surface MT1-MMP, both the TIMP-2-bound and free forms, and generated processed MMP-2 with gelatin-degrading activity. In contrast, MT1-MMP substrates testican-1 and syndecan-1 were cleaved by the cells expressing MT1-MMP, which was inhibited by TIMP-2 even at levels that stimulate MMP-2 activation. These results suggest that TIMP-2 environment determines MT1-MMP substrate choice between direct cleavage of its own substrates and MMP-2 activation.
Resumo:
As microenvironmental factors such as three-dimensionality and cell–matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells. LNCaP cells in both monoculture and co-culture were responsive to the androgen analog, R1881, as indicated by an increase in the expression (mRNA and/or protein induction) of androgen-regulated genes including prostate specific antigen and fatty acid synthase. Microarray gene expression analysis further revealed an up-regulation of bone markers and other genes associated with skeletal and vasculature development and a significant activation of transforming growth factor β1 downstream genes in LNCaP cells after co-culture with TEB. LNCaP cells co-cultured with TEB also unexpectedly showed similar changes in classical androgen-responsive genes under androgen-deprived conditions not seen in LNCaP monocultures. The molecular changes of LNCaP cells after co-culturing with TEBs suggest that osteoblasts exert a paracrine effect that may promote osteomimicry and modulate the expression of androgen-responsive genes in LNCaP cells. Taken together, we have presented a novel 3D in vitro model that allows the study of cellular and molecular changes occurring in PCa cells and osteoblasts that are relevant to metastatic colonization of bone. This unique in vitro model could also facilitate cancer biologists to dissect specific biological hypotheses via extensive genomic or proteomic assessments to further our understanding of the PCa-bone crosstalk.
Resumo:
We have previously isolated a series of MCF-7 human breast cancer cell variants which no longer require estrogen-supplementation for tumor growth in nude mice (Clarke et al. Proc Natl Acad Sci USA 86: 3649-3653, 1989). We now report that these hormone-independent and hormone-responsive variants (MIII, MCF7/LCC1) can invade locally from solid mammary fat pad tumors, and produce primary extensions on the surface of intraperitoneal structures including liver, pancreas, and diaphragm. Both lymphatic and hematogenous dissemination are observed, resulting in the establishing of pulmonary, bone, and renal metastases. The pattern of metastasis by MIII and MCF7/LCC1 cells closely resembles that frequently observed in breast cancer patients, and provides the first evidence of metastasis from MCF-7 cells growing in vivo without supplementary estrogen. The interexperimental incidence of metastases, and the time from cell inoculation to the appearance of metastatic disease are variable. The increased metastatic potential is not associated with an increase in either the level of laminin attachment, laminin receptor mRNA expression, or secreted type IV collagenolytic activity. We also did not detect a significant decrease in the steady-state mRNA levels of the metastasis inhibitor nm23 gene. However, when growing without estrogen in vitro, MCF7/LCC1 cells produce elevated levels of the estrogen-inducible cathepsin D enzyme.
Resumo:
Muscle invasive transitional cell carcinoma (TCC) of the bladder is associated with a high frequency of metastasis, resulting in poor prognosis for patients presenting with this disease. Models that capture and demonstrate step-wise enhancement of elements of the human metastatic cascade on a similar genetic background are useful research tools. We have utilized the transitional cell carcinoma cell line TSU-Pr1 to develop an in vivo experimental model of bladder TCC metastasis. TSU-Pr1 cells were inoculated into the left cardiac ventricle of SCID mice and the development of bone metastases was monitored using high resolution X-ray. Tumor tissue from a single bone lesion was excised and cultured in vitro to generate the TSU-Pr1-B1 subline. This cycle was repeated with the TSU-Pr1-B1 cells to generate the successive subline TSU-Pr1-B2. DNA profiling and karyotype analysis confirmed the genetic relationship of these three cell lines. In vitro, the growth rate of these cell lines was not significantly different. However, following intracardiac inoculation TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2 exhibited increasing metastatic potential with a concomitant decrease in time to the onset of radiologically detectable metastatic bone lesions. Significant elevations in the levels of mRNA expression of the matrix metalloproteases (MMPs) membrane type 1-MMP (MT1-MMP), MT2-MMP and MMP-9, and their inhibitor, tissue inhibitor of metalloprotease-2 (TIMP-2), across the progressively metastatic cell lines, were detected by quantitative PCR. Given the role of MT1-MMP and TIMP-2 in MMP-2 activation, and the upregulation of MMP-9, these data suggest an important role for matrix remodeling, particularly basement membrane, in this progression. The TSU-Pr1-B1/B2 model holds promise for further identification of important molecules.
Resumo:
We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.
Resumo:
The LCC15-MB cell line was established from a femoral bone metastasis that arose in a 29-year-old woman initially diagnosed with an infiltrating ductal mammary adenocarcinoma. The tumor had a relatively high (8%) S-phase fraction and 1/23 positive lymph nodes (LN). Both the primary tumor and LN metastasis were positive for estrogen receptor (ER) and progesterone receptor (PgR), but lacked erbB2 expression. Approximately one year later, the patient presented with a 0.8 cm comedo-type intraductal mammary adenocarcinoma in the left breast that was negative for ER and PgR, but positive for erbB2. Thirty-five months after the initial diagnosis she was treated for acute skeletal metastasis, and stabilized with a hip replacement. At this time, tumor cells were removed from surplus involved bone, inoculated into cell culture, and developed into the LCC15-MB cell line. The bone metastasis was a poorly differentiated adenocarcinoma lacking ER, PgR, and erbB2, characteristics shared by the LCC15-MB cells, although ER can be re-expressed by treatment of the LCC15-MB cells for 5 days with 75 μM 5-aza-2'-deoxycytidine. The LCC15-MB cell line is tumorigenic when implanted subcutaneously in NCr nu/nu mice and produces long-bone metastases after intracardiac injection. Although the bone metastasis from which the LCC15-MB cell line was derived lacked vimentin (VIM) expression, the original primary tumor and lymph node metastasis were strongly VIM positive, as are LCC15-MB cells in vitro and in nude mice. The karyotype and isozyme profiles of LCC15-MB cells are consistent with its origin from a human female, with most chromosome counts in the hypertriploid range. Thirty-two marker chromosomes are present. These cells provide an in vitro/in vivo model in which to study the inter-relationships between ER, VIM, and bone metastasis in human breast cancer.
Resumo:
As the global intellectual property (IP) system grows and now impacts virtually all citizens, it is crucial that the means to understand these rights and their teachings, as well as their implications and scope become global public goods. To do so requires not only that the primary data is available freely and openly in a standardized and re-useable form, but that tools to visualize, analyse and model that data are similarly open and free public goods, adaptable to diverse needs and uses; this we call ‘transparency’.
Resumo:
Purpose To describe the physical activity (PA) levels of children attending after-school programs, 2) examine PA levels in specific after-school sessions and activity contexts, and 3) evaluate after-school PA differences in groups defined by sex and weight status. Methods One hundred forty-seven students in grades 3-6 (mean age: 10.1 +/- 0.7, 54.4% male, 16.5% overweight (OW), 22.8% at-risk for OW) from seven after-school programs in the midwestern United States wore Actigraph GT1M accelerometers for the duration of their attendance to the program. PA was objectively assessed on six occasions during an academic year (three fall and three spring). Stored activity counts were uploaded to a customized data-reduction program to determine minutes of sedentary (SED), light (LPA), moderate (MPA), vigorous (VPA), and moderate-to-vigorous (MVPA) physical activity. Time spent in each intensity category was calculated for the duration of program attendance, as well as specific after-school sessions (e.g., free play, snack time). Results On average, participants exhibited 42.6 min of SED, 40.8 min of LPA, 13.4 min of MPA, and 5.3 min of VPA. The average accumulation of MVPA was 20.3 min. Boys exhibited higher levels of MPA, VPA, and MVPA, and lower levels of SED and LPA, than girls. OW and at-risk-for-OW students exhibited significantly less VPA than nonoverweight students, but similar levels of LPA, MPA, and MVPA. MVPA levels were significantly higher during free-play activity sessions than during organized or structured activity sessions. Conclusion After-school programs seem to be an important contributor to the PA of attending children. Nevertheless, ample room for improvement exists by making better use of existing time devoted to physical activity.
Resumo:
The purpose of this study was to determine the extent to which sport education can provide students with sufficient opportunities for developing moderate- to-vigorous physical activity (MVPA). Nineteen seventh-grade boys (average age = 12.9 yrs.) participated in a 22-lesson season of floor hockey. For all students (both higher and lower skilled), students averaged a total of 31.6 min of MVPA during the season, or 63.2% of lesson time. Further, there was no significant difference according to skill level (33.4 min [Higher] vs. 30.4 min [Lower]), nor were there any significant differences in MVPA levels across the phases of the season.