449 resultados para Anaerobic power
Resumo:
Study Design: Comparative analysis Background: Calculations of lower limbs kinetics are limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Methods: Kinematics, ground reactions and knee reactions were collected using a motion analysis system, two force-plates and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reactions under-estimated the peaks of hip energy generation and absorption occurring at 63 % and 76 % of the gait cycle (GC) by 28 % and 54 %, respectively. This method over-estimated a phase of negative work at the hip (from 37 %GC to 56 %GC) by 24%. It under-estimated the phases of positive (from 57 %GC to 72 %GC) and negative (from 73 %GC to 98 %GC) work at the hip by 11 % and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without issues of foot placement on force-plates. CLINICAL RELEVANCE The hip is the only joint that an amputee controls directly to set in motion the prosthesis. Hip joint kinetics are associated with joint degeneration, low back pain, risks of fall, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.
Resumo:
Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.
Resumo:
Wind energy, being the fastest growing renewable energy source in the present world, requires a large number of wind turbines to transform wind energy into electricity. One factor driving the cost of this energy is the reliable operation of these turbines. Therefore, it is a growing requirement within the wind farm community, to monitor the operation of the wind turbines on a continuous basis so that a possible fault can be detected ahead of time. As the wind turbine operates in an environment of constantly changing wind speed, it is a challenging task to design a fault detection technique which can accommodate the stochastic operational behavior of the turbines. Addressing this issue, this paper proposes a novel fault detection criterion which is robust against operational uncertainty, as well as having the ability to quantify severity level specifically of the drivetrain abnormality within an operating wind turbine. A benchmark model of wind turbine has been utilized to simulate drivetrain fault condition and effectiveness of the proposed technique has been tested accordingly. From the simulation result it can be concluded that the proposed criterion exhibits consistent performance for drivetrain faults for varying wind speed and has linear relationship with the fault severity level.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
Nigerian electricity market is characterized by inadequate electricity generation framework, compounded by lack of timely routine maintenances. This results in significant deterioration in plant electricity output. This study analyzes the productivity changes in the Nigerian power sector. Productivity increased on average in the power sector by the adoption of new technologies from best-practice power plants. The assumption of Hicks neutral technological change is found not to be suitable for the Nigerian power sector. This study finds that the plants are not using their capacity meaningfully, instead, there is a tendency to use labor.
Resumo:
Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates.
A LIN inspired optical bus for signal isolation in multilevel or modular power electronic converters
Resumo:
Proposed in this paper is a low-cost, half-duplex optical communication bus for control signal isolation in modular or multilevel power electronic converters. The concept is inspired by the Local Interconnect Network (LIN) serial network protocol as used in the automotive industry. The proposed communications bus utilises readily available optical transceivers and is suitable for use with low-cost microcontrollers for distributed control of multilevel converters. As a signal isolation concept, the proposed optical bus enables very high cell count modular multilevel cascaded converters (MMCCs) for high-bandwidth, high-voltage and high-power applications. Prototype hardware is developed and the optical bus concept is validated experimentally in a 33-level MMCC converter operating at 120 Vrms and 60 Hz.
Resumo:
Ideally, school would be a place where all students felt that they belonged. However, the reality is that many students feel as though they do not belong to their school community. Alienated or disaffected students are an endemic problem in schools in Australia, affecting the whole school community, as well as life chances for the students themselves after school. The crux of this matter, we believe, are the tensions between the desire to connect to the school community, and the frustration experienced by some students as a result of their subjectification by the school system. Perhaps students that we tend to identify as alienated or disaffected in their schools may be resisting the accepted negotiations of power that underpin the school system.
Resumo:
This paper looks at the emergent performative culture seducing education in the Australian context. It links this corporate discourse to Deleuzean theorising of control societies to postulate that what we are experiencing is a new form of power relations – that of the modulating mechanisms of power. These modulating mechanisms overlay disciplinary power such that the self is modulated through the amplification and frequencies of the instruments of modulation: the simulation, the categorical sorting and the sample. These instruments are increasingly utilised within the performative culture of the Australian Federal Government’s Education Revolution as examples of the performative ‘terror’ or the abstraction of the self from the terrain in which they move. Finally, some new weapons are suggested that may offer preliminary and tentative ‘movement’ in deterritorialising ways through the enclosed spaces of mass, compulsory school and the policy that shapes it.
Resumo:
Schools are places where student subjectivities are negotiated and contested in a variety of spaces. This paper argues that schools organise the possibilities for student subjectivities through a set of discourses that construct idealised notions of the good student. Whilst some discourses occur across educational sites, in practice these sets of discourses construct a unique vision of the good student in each specific school site. This vision is articulated in a variety of ways in each school, however, the result is that each student is enmeshed within a complex nexus of power relations that they can contest, negotiate or accept. Most of the time, students engage in a swirling set of subjectivities that encompasses these possibilities in various ways at various times. This paper problematises commonsense notions of the good student at one school site. One intent is to give voice to the lived experience of students who find themselves the site of these technologies of power. These technologies construct a set of commonsense expectations of schools - amongst which is the desire to produce the good student. Another is to use a Foucaultean analysis that rejects the good/bad binary that underpins many commonsense understandings of what students should be.
Resumo:
This volume continues the story of football in Marvellous Melbourne during the 1880s. At this time the VFA continued to expand as Melbourne’s boom continued apace. In 1886 Port Melbourne, Prahran, St Kilda, Footscray and South Williamstown joined the competition, and the Ballarat clubs Ballarat, Ballarat Imperial and South Ballarat were also contending for the VFA premiership. In 1886 matches were divided into four quarters, goal umpires waved two flags to announce a goal, and time clocks and bells were employed to mark the end of quarters. Victoria also played inter-colonial matches against New South Wales, Tasmania and South Australia. VFA secretary T.S. Marshall was at the forefront of fighting the game’s turn towards professionalism, but although it was illegal to pay players, the practice continued. The period 1886 to 1890 also set the stage for the eventual formation of the Victorian Football League, for by the end of the 1880s the Victorian Football Association had become in effect a two-tier competition. The most popular clubs in the VFA, South Melbourne, Geelong, Carlton and Essendon collected the lion’s share of the gate money, which they used to build their wealth and entrench their position as the dominant Victorian teams. The lower tier clubs had to make do with paltry gate money and season fixtures that advantaged the strong clubs. In these fixtures the strong clubs elected to play each other first to increase their gate money, and only deemed to play the poorer clubs at the start of the season. This led to an increasing divide between the VFA’s rich and poor, and by 1890 South Williamstown and Prahran merged with Williamstown and St Kilda respectively, University dropped out of senior ranks, and the Ballarat clubs were excluded from competing for the VFA premiership, which left 12 senior clubs until Collingwood’s emergence in 1892. At this time, no team was as powerful as South Melbourne, which experienced the greatest success in the club’s VFA and VFL history when it collected triple premiership crowns in 1888, 1889, and 1890. South Melbourne was a most ambitious club and spearheaded the move towards professionalism, although this could not be made public. The fine teams it produced at this time contained some of the greatest players of the era, such as Peter Burns, “Sonny” Elms and “Dinny” McKay, and it looked after players with health insurance, jobs, inter-colonial trips, and other incentives. Geelong’s premiership in 1886 was perhaps its greatest triumph, but this success was followed by a premiership drought that would last for 39 years. Carlton remained one of Victorian football’s power clubs, and after securing the premiership in 1887 continued to compete for top honours. As always, the game became ever more popular and world record crowds of over 30,000 attended matches between South Melbourne, Carlton, Geelong and Essendon.
Resumo:
Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.
Resumo:
We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.
Resumo:
The system for high utilization of LNG cold energy is proposed by use of process simulator. The proposed design is a closed loop system, and composed by a Hampson type heat exchanger, turbines, pumps and advanced humid air turbine (AHAT) or Gas turbine combined cycle (GTCC). Its heat sources are Boil-off gas and cooling water for AHAT or GTCC. The higher cold exergy recovery to power can be about 38 to 56% as compared to the existing cold power generation of about 20% with a Rankine cycle of a single component. The advantage of the proposed system is to reduce the number of heat exchangers. Furthermore, the environmental impact is minimized because the proposed design is a closed loop system. A life cycle comparative cost is calculated to demonstrate feasibility of the proposed design. The development of the Hampson type exchangers is expected to meet the key functional requirements and will result in much higher LNG cold exergy recovery and the overall system performance i.e. re-gasification. Additionally, the proposed design is expected to provide flexibility to meet different gas pressure suited for the deregulation of energy system in Japan and higher reliability for an integrated boil-off gas system.
Resumo:
为研究风电并网对互联系统低频振荡的影响,基于完整的双馈风电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况.从双馈风电机组并网输送距离、并网容量、互联系统联络线传送功率、是否加装电力系统稳定器等多个方面,多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响.之后,以两个包括两个区域的电力系统为例,进行了系统的计算分析和比较.结果表明,有双馈风电机组接入的互联电力系统,在不同运行模式下,双馈风电机组的并网输送距离、出力水平、联络线传送功率对低频振荡模式的影响在趋势和程度上均有显著差异,这样在对风电场进行入网规划、设计和运行时就需要综合考虑这些因素的影响.