622 resultados para pacs: neural computing technologies
Resumo:
The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.
Resumo:
Although advances in technology now enable people to communicate 'anytime, anyplace', it is not clear how citizens can be motivated to actually do so. This paper evaluates the impact of three principles of psychological empowerment, namely perceived self-efficacy, sense of community and causal importance, on public transport passengers' motivation to report issues and complaints while on the move. A week-long study with 65 participants revealed that self-efficacy and causal importance increased participation in short bursts and increased perceptions of service quality over longer periods. Finally, we discuss the implications of these findings for citizen participation projects and reflect on design opportunities for mobile technologies that motivate citizen participation.
Resumo:
This paper presents a nonlinear gust-attenuation controller based on constrained neural-network (NN) theory. The controller aims to achieve sufficient stability and handling quality for a fixed-wing unmanned aerial system (UAS) in a gusty environment when control inputs are subjected to constraints. Constraints in inputs emulate situations where aircraft actuators fail requiring the aircraft to be operated with fail-safe capability. The proposed controller enables gust-attenuation property and stabilizes the aircraft dynamics in a gusty environment. The proposed flight controller is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equations based on an policy iteration (PI) approach. Performance of the controller is evaluated using a high-fidelity six degree-of-freedom Shadow UAS model. Simulations show that our controller demonstrates great performance improvement in a gusty environment, especially in angle-of-attack (AOA), pitch and pitch rate. Comparative studies are conducted with the proportional-integral-derivative (PID) controllers, justifying the efficiency of our controller and verifying its suitability for integration into the design of flight control systems for forced landing of UASs.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.
Resumo:
Information and communications technologies are a significant component of the healthcare domain and electronic health records play a major role within it. As a result, it is important that they are accepted en masse by healthcare professionals. How healthcare professionals perceive the usefulness of electronic health records and their attitudes towards them have been shown to have significant effects on their overall acceptance. This paper investigates the role of perceived usefulness and attitude on the intention to use electronic health records by future healthcare professionals using polynomial regression with response surface analysis. Results show that the relationship is more complex than predicted in prior research. The paper concludes that the predicting properties of the above determinants must be further investigated to clearly understand their role in predicting the intention to use electronic health records and in designing systems that are better adopted by healthcare professionals of the future.
Resumo:
Physical activity has been identified as a key behaviour in determining an individual’s health and functioning. Adolescent physical inactivity has been shown to track strongly through to adulthood. Interventions in youth to promote and increase physical activity have had mixed results. The significant rise over the past decade in time spent by adolescents performing social networking may provide a unique opportunity for health promoters to interact with adolescents through a familiar medium. The purpose of was study is to investigate the potential utility of social networking and associated technologies for the promotion of physical activity amongst adolescents. Participants were recruited from two nondenominational same-sex private schools, from high socioeconomic backgrounds in Brisbane, Australia. A total of 112 (90.3%) participants had complete data sets and were included in the analysis. Account ownership and rates of access to some social networking sites were high. However, a combination of a lack of interest and additional risks associated with social networking utilities, means that caution should be undertaken prior to the commencement of any intervention seeking to increase engagement in physical activities through these mediums. Student smart phone access and interest in smart phone applications for physical activity promotion purposes were moderate, and may provide opportunities for samples of adolescents from high socioeconomic backgrounds who are more likely to have access to appropriate technologies. As technology advances, the rate of smart phone ownership as opposed to overall phone ownership is likely to steadily increase over time. Access and use of information technology by children likely to continue to become more convenient. This makes smart phone applications as a means for physical activity promotion progressively more practical, and a promising future option.
Resumo:
The emergence of pseudo-marginal algorithms has led to improved computational efficiency for dealing with complex Bayesian models with latent variables. Here an unbiased estimator of the likelihood replaces the true likelihood in order to produce a Bayesian algorithm that remains on the marginal space of the model parameter (with latent variables integrated out), with a target distribution that is still the correct posterior distribution. Very efficient proposal distributions can be developed on the marginal space relative to the joint space of model parameter and latent variables. Thus psuedo-marginal algorithms tend to have substantially better mixing properties. However, for pseudo-marginal approaches to perform well, the likelihood has to be estimated rather precisely. This can be difficult to achieve in complex applications. In this paper we propose to take advantage of multiple central processing units (CPUs), that are readily available on most standard desktop computers. Here the likelihood is estimated independently on the multiple CPUs, with the ultimate estimate of the likelihood being the average of the estimates obtained from the multiple CPUs. The estimate remains unbiased, but the variability is reduced. We compare and contrast two different technologies that allow the implementation of this idea, both of which require a negligible amount of extra programming effort. The superior performance of this idea over the standard approach is demonstrated on simulated data from a stochastic volatility model.
Resumo:
Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.
Resumo:
Criminal intelligence is an area of expertise highly sought-after internationally and within a variety of justice-related professions; however, producing university graduates with the requisite professional knowledge, as well as analytical, organisational and technical skills presents a pedagogical and technical challenge to university educators. The situation becomes even more challenging when students are undertaking their studies by distance education. This best practice session showcases the design of an online undergraduate unit for final year justice students which uses an evolving real-time criminal scenario as the focus of authentic learning activities in order to prepare students for graduate roles within the criminal intelligence and justice professions. Within the unit, students take on the role of criminal intelligence analysts, applying relevant theories, models and strategies to solve a complex but realistic crime and complete briefings and documentation to industry standards as their major summative assessment task. The session will demonstrate how the design of the online unit corresponds to authentic learning principles, and will specifically map the elements of the unit design to Herrington & Oliver’s instructional design framework for authentic learning (2000; Herrington & Herrington 2006). The session will show how a range of technologies was used to create a rich learning experience for students that could be easily maintained over multiple unit iterations without specialist technical support. The session will also discuss the unique pedagogical affordances and challenges implicated in the location of the unit within an online learning environment, and will reflect on some of the lessons learned from the development which may be relevant to other authentic online learning contexts.
Resumo:
The main theme of this thesis is to allow the users of cloud services to outsource their data without the need to trust the cloud provider. The method is based on combining existing proof-of-storage schemes with distance-bounding protocols. Specifically, cloud customers will be able to verify the confidentiality, integrity, availability, fairness (or mutual non-repudiation), data freshness, geographic assurance and replication of their stored data directly, without having to rely on the word of the cloud provider.
Resumo:
“The Cube” is a unique facility that combines 48 large multi-touch screens and very large-scale projection surfaces to form one of the world’s largest interactive learning and engagement spaces. The Cube facility is part of the Queensland University of Technology’s (QUT) newly established Science and Engineering Centre, designed to showcase QUT’s teaching and research capabilities in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. In this application paper we describe, the Cube, its technical capabilities, design rationale and practical day-to-day operations, supporting up to 70,000 visitors per week. Essential to the Cube’s operation are five interactive applications designed and developed in tandem with the Cube’s technical infrastructure. Each of the Cube’s launch applications was designed and delivered by an independent team, while the overall vision of the Cube was shepherded by a small executive team. The diversity of design, implementation and integration approaches pursued by these five teams provides some insight into the challenges, and opportunities, presented when working with large distributed interaction technologies. We describe each of these applications in order to discuss the different challenges and user needs they address, which types of interactions they support and how they utilise the capabilities of the Cube facility.
Resumo:
Based on a series of interviews of Australians between the ages of 55 and 75 this paper explores the relations between our participants’ attitudes towards and use of communication, social and tangible technologies and three relevant themes from our data: staying active, friends and families, and cultural selves. While common across our participants’ experiences of ageing, these themes were notable for the diverse ways they were experienced and expressed within individual lives and for the different roles technology was used for within each. A brief discussion of how the diversity of our ageing population implicates the design of emerging technologies ends the paper.
Resumo:
Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.
Resumo:
Advances in Information and Communication Technologies have the potential to improve many facets of modern healthcare service delivery. The implementation of electronic health records systems is a critical part of an eHealth system. Despite the potential gains, there are several obstacles that limit the wider development of electronic health record systems. Among these are the perceived threats to the security and privacy of patients’ health data, and a widely held belief that these cannot be adequately addressed. We hypothesise that the major concerns regarding eHealth security and privacy cannot be overcome through the implementation of technology alone. Human dimensions must be considered when analysing the provision of the three fundamental information security goals: confidentiality, integrity and availability. A sociotechnical analysis to establish the information security and privacy requirements when designing and developing a given eHealth system is important and timely. A framework that accommodates consideration of the legislative requirements and human perspectives in addition to the technological measures is useful in developing a measurable and accountable eHealth system. Successful implementation of this approach would enable the possibilities, practicalities and sustainabilities of proposed eHealth systems to be realised.