457 resultados para numerical prediction
Resumo:
Dried plant food products are increasing in demand in the consumer market, leading to continuing research to develop better products and processing techniques. Plant materials are porous structures, which undergo large deformations during drying. For any given food material, porosity and other cellular parameters have a direct influence on the level of shrinkage and deformation characteristics during drying, which involve complex mechanisms. In order to better understand such mechanisms and their interrelationships, numerical modelling can be used as a tool. In contrast to conventional grid-based modelling techniques, it is considered that meshfree methods may have a higher potential for modelling large deformations of multiphase problem domains. This work uses a meshfree based microscale plant tissue drying model, which was recently developed by the authors. Here, the effects of porosity have been newly accounted for in the model with the objective of studying porosity development during drying and its influence on shrinkage at the cellular level. For simplicity, only open pores are modelled and in order to investigate the influence of different cellular parameters, both apple and grape tissues were used in the study. The simulation results indicated that the porosity negatively influences shrinkage during drying and the porosity decreases as the moisture content reduces (when open pores are considered). Also, there is a clear difference in the deformations of cells, tissues and pores, which is mainly influenced by the cell wall contraction effects during drying.
Resumo:
Most standard algorithms for prediction with expert advice depend on a parameter called the learning rate. This learning rate needs to be large enough to fit the data well, but small enough to prevent overfitting. For the exponential weights algorithm, a sequence of prior work has established theoretical guarantees for higher and higher data-dependent tunings of the learning rate, which allow for increasingly aggressive learning. But in practice such theoretical tunings often still perform worse (as measured by their regret) than ad hoc tuning with an even higher learning rate. To close the gap between theory and practice we introduce an approach to learn the learning rate. Up to a factor that is at most (poly)logarithmic in the number of experts and the inverse of the learning rate, our method performs as well as if we would know the empirically best learning rate from a large range that includes both conservative small values and values that are much higher than those for which formal guarantees were previously available. Our method employs a grid of learning rates, yet runs in linear time regardless of the size of the grid.
Resumo:
Changing environments pose a serious problem to current robotic systems aiming at long term operation under varying seasons or local weather conditions. This paper is built on our previous work where we propose to learn to predict the changes in an environment. Our key insight is that the occurring scene changes are in part systematic, repeatable and therefore predictable. The goal of our work is to support existing approaches to place recognition by learning how the visual appearance of an environment changes over time and by using this learned knowledge to predict its appearance under different environmental conditions. We describe the general idea of appearance change prediction (ACP) and investigate properties of our novel implementation based on vocabularies of superpixels (SP-ACP). Our previous work showed that the proposed approach significantly improves the performance of SeqSLAM and BRIEF-Gist for place recognition on a subset of the Nordland dataset under extremely different environmental conditions in summer and winter. This paper deepens the understanding of the proposed SP-ACP system and evaluates the influence of its parameters. We present the results of a large-scale experiment on the complete 10 h Nordland dataset and appearance change predictions between different combinations of seasons.
Resumo:
This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of $O(\tau+h^{r+1})$ in the $L^2$ norm, where $\tau$ and $h$ are the step sizes in time and space, respectively, and $r$ is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are $O(\tau^{1.5}+h^{r+1})$. Furthermore, two improved algorithms are constrcted, they are also unconditionally stable and convergent of order $O(\tau^2+h^{r+1})$. Numerical examples are provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones are included, which show that our numerical algorithms exhibit better performances than the known ones.
Resumo:
The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order timefractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Resumo:
The present study deals with two dimensional, numerical simulation of railway track supporting system subjected to dynamic excitation force. Under plane strain condition, the coupled finite-infinite elements to represent the near and far field stress distribution and thin layer interface element was employed to model the interfacial behavior between sleepers and ballast. To account for the relative debonding, slipping and crushing that could take place in the contact area between the sleepers and ballast, modified Mohr-Coulomb criterion was adopted. Furthermore an attempt has been made to consider the elasto-plastic material non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and supporting materials. Based on the proposed physical and constitutive modeling a code has been developed for dynamic loads. The applicability of the developed F.E code has been demonstrated by analyzing a real railway supporting structure.
Resumo:
The present contribution deals with the numerical modelling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behaviour between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area between sleepers and ballast, a modified Mohr-Coulomb criterion was adopted. Further more an attempt was made to consider the elasto plastic materials’ non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and other supporting materials. It is seen that during an incremental-iterative mode of load application, the yielding initially started from the edge of the sleepers and then flowed vertically downwards and spread towards the centre of the railway supporting system.
Numerical investigation of motion and deformation of a single red blood cell in a stenosed capillary
Resumo:
It is generally assumed that influence of the red blood cells (RBCs) is predominant in blood rheology. The healthy RBCs are highly deformable and can thus easily squeeze through the smallest capillaries having internal diameter less than their characteristic size. On the other hand, RBCs infected by malaria or other diseases are stiffer and so less deformable. Thus it is harder for them to flow through the smallest capillaries. Therefore, it is very important to critically and realistically investigate the mechanical behavior of both healthy and infected RBCs which is a current gap in knowledge. The motion and the steady state deformed shape of the RBCs depend on many factors, such as the geometrical parameters of the capillary through which blood flows, the membrane bending stiffness and the mean velocity of the blood flow. In this study, motion and deformation of a single two-dimensional RBC in a stenosed capillary is explored by using smoothed particle hydrodynamics (SPH) method. An elastic spring network is used to model the RBC membrane, while the RBC's inside fluid and outside fluid are treated as SPH particles. The effect of RBC's membrane stiffness (kb), inlet pressure (P) and geometrical parameters of the capillary on the motion and deformation of the RBC is studied. The deformation index, RBC's mean velocity and the cell membrane energy are analyzed when the cell passes through the stenosed capillary. The simulation results demonstrate that the kb, P and the geometrical parameters of the capillary have a significant impact on the RBCs' motion and deformation in the stenosed section.
Resumo:
The ability to estimate the expected Remaining Useful Life (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the Reliability Centred Maintenance (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the Condition-Based Maintenance (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, Proportional Hazard Model (PHM) and Proportional Covariate Model (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.