492 resultados para mobile applications
Resumo:
This paper presents Capital Music, a mobile application enabling real-time sharing of song choices with collocated urban dwellers. Due to the real-time, location-based peer-to-peer approach of the application, a user experience study was performed utilising the Wizard of Oz method. The study provides insight into how sharing non-privacy sensitive but personal data in an anonymous way can influence the user experience of people in public urban places. We discuss the findings in relation to how Capital Music influences the process of “cocooning” in public urban places, the practice of designing anonymous interactions between collocated strangers, and how the sharing of song choices can create a sense of commonality between anonymous users in the urban space. The outcomes of this study are relevant for future location-based social networking applications that aim to create interactions between collocated strangers.
Resumo:
Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.
Resumo:
The increasing popularity of video consumption from mobile devices requires an effective video coding strategy. To overcome diverse communication networks, video services often need to maintain sustainable quality when the available bandwidth is limited. One of the strategy for a visually-optimised video adaptation is by implementing a region-of-interest (ROI) based scalability, whereby important regions can be encoded at a higher quality while maintaining sufficient quality for the rest of the frame. The result is an improved perceived quality at the same bit rate as normal encoding, which is particularly obvious at the range of lower bit rate. However, because of the difficulties of predicting region-of-interest (ROI) accurately, there is a limited research and development of ROI-based video coding for general videos. In this paper, the phase spectrum quaternion of Fourier Transform (PQFT) method is adopted to determine the ROI. To improve the results of ROI detection, the saliency map from the PQFT is augmented with maps created from high level knowledge of factors that are known to attract human attention. Hence, maps that locate faces and emphasise the centre of the screen are used in combination with the saliency map to determine the ROI. The contribution of this paper lies on the automatic ROI detection technique for coding a low bit rate videos which include the ROI prioritisation technique to give different level of encoding qualities for multiple ROIs, and the evaluation of the proposed automatic ROI detection that is shown to have a close performance to human ROI, based on the eye fixation data.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
A contentious issue in the field of destination marketing has been the recent tendency by some authors to refer to destination marketing organisations (DMOs) as destination management organisations. This nomenclature infers control over destination resources, a level of influence that is in reality held by few DMOs. This issue of a lack of control over the destination ‘amalgam’ is acknowledged by a number of the contributors, including the editors and the discussion on destination competitiveness by J.R. Brent Ritchie and Geoffrey Crouch, and is perhaps best summed up by Alan Fyall in the concluding chapter: “...unless all elements are owned by the same body, then the ability to control and influence the direction, quality and development of the destination pose very real challenges’ (p. 343). The title of the text acknowledges both marketing and management, in relation to theories and applications. While there are insightful propositions about ideals of destination management, readers will find there is a lack of coverage of destination management in practise by DMOs. This represents fertile ground for future research.
Resumo:
Young drivers are overrepresented in motor vehicle crash rates, and their risk increases when carrying similar aged passengers. Graduated Driver Licensing strategies have demonstrated effectiveness in reducing fatalities among young drivers, however complementary approaches may further reduce crash rates. Previous studies conducted by the researchers have shown that there is considerable potential for a passenger focus in youth road safety interventions, particularly involving the encouragement of young passengers to intervene in their peers’ risky driving (Buckley, Chapman, Sheehan & Davidson, 2012). Additionally, this research has shown that technology-based applications may be a promising means of delivering passenger safety messages, particularly as young people are increasingly accessing web-based and mobile technologies. This research describes the participatory design process undertaken to develop a web-based road safety program, and involves feasibility testing of storyboards for a youth passenger safety application. Storyboards and framework web-based materials were initially developed for a passenger safety program, using the results of previous studies involving online and school-based surveys with young people. Focus groups were then conducted with 8 school staff and 30 senior school students at one public high school in the Australian Capital Territory. Young people were asked about the situations in which passengers may feel unsafe and potential strategies for intervening in their peers’ risky driving. Students were also shown the storyboards and framework web-based material and were asked to comment on design and content issues. Teachers were also shown the material and asked about their perceptions of program design and feasibility. The focus group data will be used as part of the participatory design process, in further developing the passenger safety program. This research describes an evidence-based approach to the development of a web-based application for youth passenger safety. The findings of this research and resulting technology will have important implications for the road safety education of senior high school students.
Resumo:
Vehicular Ad-hoc Networks (VANET) have different characteristics compared to other mobile ad-hoc networks. The dynamic nature of the vehicles which act as routers and clients are connected with unreliable radio links and Routing becomes a complex problem. First we propose CO-GPSR (Cooperative GPSR), an extension of the traditional GPSR (Greedy Perimeter Stateless Routing) which uses relay nodes which exploit radio path diversity in a vehicular network to increase routing performance. Next we formulate a Multi-objective decision making problem to select optimum packet relaying nodes to increase the routing performance further. We use cross layer information for the optimization process. We evaluate the routing performance more comprehensively using realistic vehicular traces and a Nakagami fading propagation model optimized for highway scenarios in VANETs. Our results show that when Multi-objective decision making is used for cross layer optimization of routing a 70% performance increment can be obtained for low vehicle densities on average, which is a two fold increase compared to the single criteria maximization approach.
Resumo:
In this paper, we present TiltZoom, a collection of tilt-based interaction techniques designed for easy one-handed zooming on mobile devices. TiltZoom represents novel gestural interaction techniques, implemented using rate-of-rotation readings from a gyroscope, a sensor commonly embedded on current generation smart phones. We designed and experimented three variants of TiltZoom - Tilt Level, Tilt and Hold and Flip Gesture. The design decisions for all three variants are discussed in this paper and their performance, as well as subjective user experience are evaluated and compared against conventional touch-based zooming techniques. TiltZoom appears to be a worthy addition to current established collection of gesture-based mobile interaction techniques for zooming controls, especially when user has only one hand available when moving about.
Resumo:
The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.
Resumo:
Food has been a major agenda in political, socio-cultural, and environmental domains throughout history. The significance of food has been particularly highlighted in recent years with the growing public awareness of the unfolding impacts of climate change, challenging our understanding, practice, and expectations of our relationship with food. Parallel to this development has been the rise of web applications such as blogs, wikis, video and photo sharing sites, and social networking systems that are arguably more open, collaborative, and personalisable. These so-called ‘Web 2.0’ technologies have contributed to a more participatory Internet experience than what had previously been possible. An increasing number of these social applications are now available on mobile technologies where they take advantage of device-specific features such as sensors, location and context awareness, further expanding potential for the culture of participation and creativity. This international volume assembles a diverse collection of book chapters that contribute towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods, and practices of social and mobile technology to enable engagement with people and creativity in the domain of food in contemporary society. It brings together an international group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis, twitter, blogging, mapping, shared displays and urban screens, and their impact to foster a better understanding and practice of environmentally, socio-culturally, economically, and health-wise sustainable food culture.
Resumo:
In this study, we explore the design and evaluation of a mobile online discussion system for motivating students to share their learning experiences. The system supports interaction with peers and academic staff anytime and anywhere using mobile devices. The application introduces a set of features that enables customisation for different purposes. This paper describes the application and explains the motivation for developing the application. We describe the methods and results of a case study that explores usage of the application among a small group of localised participants. Finally, we discuss the implications of this work and outline future areas of research and development.
Resumo:
Mobile devices are becoming indispensable personal assistants in people's daily life as these devices support work, study, play and socializing activities. The multi-modal sensors and rich features of smartphones can capture abundant information about users' life experience, such as taking photos or videos on what they see and hear, and organizing their tasks and activities using calendar, to-do lists, and notes. Such vast information can become useful to help users recalling episodic memories and reminisce about meaningful experiences. In this paper, we propose to apply autobiographical memory framework to provide an effective mechanism to structure mobile life-log data. The proposed model is an attempt towards a more complete personal life-log indexing model, which will support long term capture, organization, and retrieval. To demonstrate the benefits of the proposed model, we propose some design solutions for enabling users-driven capture, annotation, and retrieval of autobiographical multimedia chronicles tools.
Resumo:
Binge drinking is an important issue in Australia and worldwide. Existing studies have shown that mobile tools provide an effective method to self-monitor drink sessions, whereas social tool such as Facebook, can be used to construct social drinker identity (thus normalizing binge drinking), but if used among a peer-support that promotes the importance of responsible drinking, it potentially can be effective in moderating alcohol consumption. To combine mobile and social tool approaches, the study involves two complementary and largely qualitative studies to inform a novel design of an engaging mobile social tool for supporting responsible drinking among young women: (1) a survey of literature and mobile tools on alcohol related studies and interventions; (2) an in-depth focus group interview among young women aged 18 to 24. The results and discussions provide some valuable insights for future research and development in the field.
Resumo:
The smart phones we carry with us are becoming ubiquitous with everyday life and the sensing capabilities of these devices allow us to provide context-aware services. In this paper, we discuss the development of UniNav, a context-aware mobile application that delivers personalised campus maps for universities. The application utilises university students’ details to provide information and services that are relevant and important to them. It helps students to navigate within the campus and become familiar with their university environment quickly. A study was undertaken to evaluate the acceptability and usefulness of the campus map, as well as the impact on a users’ navigation efficiency by utilising the personal and environmental contexts. The result indicates the integration of personal and environmental contexts on digital maps can improve its usefulness and navigation efficiency.