849 resultados para automated assessment
Resumo:
Enterococci are versatile Gram-positive bacteria that can survive under extreme conditions. Most enterococci are non-virulent and found in the gastrointestinal tract of humans and animals. Other strains are opportunistic pathogens that contribute to a large number of nosocomial infections globally. Epidemiological studies demonstrated a direct relationship between the density of enterococci in surface waters and the risk of swimmer-associated gastroenteritis. The distribution of infectious enterococcal strains from the hospital environment or other sources to environmental water bodies through sewage discharge or other means, could increase the prevalence of these strains in the human population. Environmental water quality studies may benefit from focusing on a subset of Enterococcus spp. that are consistently associated with sources of faecal pollution such as domestic sewage, rather than testing for the entire genus. E. faecalis and E. faecium are potentially good focal species for such studies, as they have been consistently identified as the dominant Enterococcus spp. in human faeces and sewage. On the other hand enterococcal infections are predominantly caused by E. faecalis and E. faecium. The characterisation of E. faecalis and E. faecium is important in studying their population structures, particularly in environmental samples. In developing and implementing rapid, robust molecular genotyping techniques, it is possible to more accurately establish the relationship between human and environmental enterococci. Of particular importance, is to determine the distribution of high risk enterococcal clonal complexes, such as E. faecium clonal complex 17 and E. faecalis clonal complexes 2 and 9 in recreational waters. These clonal complexes are recognized as particularly pathogenic enterococcal genotypes that cause severe disease in humans globally. The Pimpama-Coomera watershed is located in South East Queensland, Australia and was investigated in this study mainly because it is used intensively for agriculture and recreational purposes and has a strong anthropogenic impact. The primary aim of this study was to develop novel, universally applicable, robust, rapid and cost effective genotyping methods which are likely to yield more definitive results for the routine monitoring of E. faecalis and E. faecium, particularly in environmental water sources. To fullfill this aim, new genotyping methods were developed based on the interrogation of highly informative single nucleotide polymorphisms (SNPs) located in housekeeping genes of both E. faecalis and E. faecium. SNP genotyping was successfully applied in field investigations of the Coomera watershed, South-East Queensland, Australia. E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles respectively. This study showed the high longitudinal diversity of E. faecalis and E. faecium over a period of two years, and both human-related and human-specific SNP profiles were identified. Furthermore, 4.25% of E. faecium strains isolated from water was found to correspond to the important clonal complex-17 (CC17). Strains that belong to CC17 cause the majority of hospital outbreaks and clinical infections globally. Of the six sampling sites of the Coomera River, Paradise Point had the highest number of human-related and human-specific E. faecalis and E. faecium SNP profiles. The secondary aim of this study was to determine the antibiotic-resistance profiles and virulence traits associated with environmental E. faecalis and E. faecium isolates compared to human pathogenic E. faecalis and E. faecium isolates. This was performed to predict the potential health risks associated with coming into contact with these strains in the Coomera watershed. In general, clinical isolates were found to be more resistant to all the antibiotics tested compared to water isolates and they harbored more virulence traits. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). However, tetracycline, gentamicin, ciprofloxacin and ampicillin resistance was observed in water isolates. The virulence gene esp was the most prevalent virulence determinant observed in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium), and this gene has been described as a human-specific marker used for microbial source tracking (MST). The presence of esp in water isolates (16.36% of E. faecalis and 19.14% of E. faecium) could be indicative of human faecal contamination in these waterways. Finally, in order to compare overall gene expression between environmental and clinical strains of E. faecalis, a comparative gene hybridization study was performed. The results of this investigation clearly demonstrated the up-regulation of genes associated with pathogenicity in E. faecalis isolated from water. The expression study was performed at physiological temperatures relative to ambient temperatures. The up-regulation of virulence genes demonstrates that environmental strains of E. faecalis can pose an increased health risk which can lead to serious disease, particularly if these strains belong to the virulent CC17 group. The genotyping techniques developed in this study not only provide a rapid, robust and highly discriminatory tool to characterize E. faecalis and E. faecium, but also enables the efficient identification of virulent enterococci that are distributed in environmental water sources.
Resumo:
Standards referenced reform, tied to reporting, engages directly with assessment issues related to accountability. Assessment is the key to good education and is inseparable from curriculum. In an accountability context, standards are used as a lever to improve the reliability and consistency of teacher judgement; and classroom evidence is used by education systems for reporting and tracking achievement over time. Assessment is thus a powerful driver for change and is at the heart of the teaching-learning dynamic. The relationship between the learner, learning and assessment needs to be kept central and the idea of teacher empowerment is fundamental. This chapter is a call to honour and sustain teacher professionalism through educative forms of school-based and teacher-led evaluation, assessment and communities of judgement practice. It supports the argument for a central place for classroom assessment in the role of assessment in educational accountability...
Resumo:
Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.
Resumo:
Aim: Individuals with intellectual disability (ID) have higher rates of mental health problems than the general population. Assessment tends to rely heavily on self-report, but persons with ID often have difficulties in identifying and describing their own thoughts and feelings. Measures that are psychometrically sound with typically developing populations may not be as robust in samples with ID. The aim of the current study was to examine a range of self-report measures for assessing the mental health of children with ID, and to consider the appropriateness of minor modifications to those instruments. Method: The participants were 58 children with ID (mean 11.7 years) attending Year 6 in mainstream primary schools. At the first time point they completed four established measures of depression, anxiety and mood. Minor modifications were made to wording and format at re-administration six months later. Results: Internal consistency varied considerably across measures. Modifications resulted in small or no improvements, but the results were relatively consistent over time and across similar measures. Some gender differences were evident. Conclusions: The findings confirm the difficulties that children with ID may have when responding to self-report measures of mental health, and suggest that care should be taken in choice of instruments. While modifications can produce small improvements, it is clear that more robust measures of mental health are needed for persons with ID.
Resumo:
Objective Although several validated nutritional screening tools have been developed to “triage” inpatients for malnutrition diagnosis and intervention, there continues to be debate in the literature as to which tool/tools clinicians should use in practice. This study compared the accuracy of seven validated screening tools in older medical inpatients against two validated nutritional assessment methods. Methods This was a prospective cohort study of medical inpatients at least 65 y old. Malnutrition screening was conducted using seven tools recommended in evidence-based guidelines. Nutritional status was assessed by an accredited practicing dietitian using the Subjective Global Assessment (SGA) and the Mini-Nutritional Assessment (MNA). Energy intake was observed on a single day during first week of hospitalization. Results In this sample of 134 participants (80 ± 8 y old, 50% women), there was fair agreement between the SGA and MNA (κ = 0.53), with MNA identifying more “at-risk” patients and the SGA better identifying existing malnutrition. Most tools were accurate in identifying patients with malnutrition as determined by the SGA, in particular the Malnutrition Screening Tool and the Nutritional Risk Screening 2002. The MNA Short Form was most accurate at identifying nutritional risk according to the MNA. No tool accurately predicted patients with inadequate energy intake in the hospital. Conclusion Because all tools generally performed well, clinicians should consider choosing a screening tool that best aligns with their chosen nutritional assessment and is easiest to implement in practice. This study confirmed the importance of rescreening and monitoring food intake to allow the early identification and prevention of nutritional decline in patients with a poor intake during hospitalization.
Resumo:
The modern structural diagnosis process is rely on vibration characteristics to assess safer serviceability level of the structure. This paper examines the potential of change in flexibility method to use in damage detection process and two main practical constraints associated with it. The first constraint addressed in this paper is reduction in number of data acquisition points due to limited number of sensors. Results conclude that accuracy of the change in flexibility method is influenced by the number of data acquisition points/sensor locations in real structures. Secondly, the effect of higher modes on damage detection process has been studied. This addresses the difficulty of extracting higher order modal data with available sensors. Four damage indices have been presented to identify their potential of damage detection with respect to different locations and severity of damage. A simply supported beam with two degrees of freedom at each node is considered only for a single damage cases throughout the paper.
Resumo:
Purpose To compare self-reported driving ability with objective measures of on-road driving performance in a large cohort of older drivers. Methods 270 community-living adults aged 70 – 88 years recruited via the electoral roll completed a standardized assessment of on-road driving performance and questionnaires determining perceptions of their own driving ability, confidence and driving difficulties. Retrospective self-reported crash data over the previous five years were recorded. Results Participants reported difficulty with only selected driving situations, including driving into the sun, in unfamiliar areas, in wet conditions, and at night or dusk. The majority of participants rated their own driving as good to excellent. Of the 47 (17%) of drivers who were rated as potentially unsafe to drive, 66% rated their own driving as good to excellent. Drivers who made critical errors, where the driving instructor had to take control of the vehicle, had no lower self-rating of driving ability then the rest of the group. The discrepancy in self-perceptions of driving and participants’ safety rating on the on-road assessment was significantly associated with self-reported retrospective crash rates, where those drivers who displayed greater overconfidence in their own driving were significantly more likely to report a crash. Conclusions This study demonstrates that older drivers with the greatest mismatch between actual and self-rated driving ability pose the greatest risk to road safety. Therefore licensing authorities should not assume that when older individuals’ driving abilities begin to decline they will necessarily be aware of these changes and adopt appropriate compensatory driving behaviours; rather, it is essential that evidence-based assessments are adopted.
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.