942 resultados para Suggestion systems
Resumo:
Real-time networked control systems (NCSs) over data networks are being increasingly implemented on a massive scale in industrial applications. Along with this trend, wireless network technologies have been promoted for modern wireless NCSs (WNCSs). However, popular wireless network standards such as IEEE 802.11/15/16 are not designed for real-time communications. Key issues in real-time applications include limited transmission reliability and poor transmission delay performance. Considering the unique features of real-time control systems, this paper develops a conditional retransmission enabled transport protocol (CRETP) to improve the delay performance of the transmission control protocol (TCP) and also the reliability performance of the user datagram protocol (UDP) and its variants. Key features of the CRETP include a connectionless mechanism with acknowledgement (ACK), conditional retransmission and detection of ineffective data packets on the receiver side.
Resumo:
This research explores music in space, as experienced through performing and music-making with interactive systems. It explores how musical parameters may be presented spatially and displayed visually with a view to their exploration by a musician during performance. Spatial arrangements of musical components, especially pitches and harmonies, have been widely studied in the literature, but the current capabilities of interactive systems allow the improvisational exploration of these musical spaces as part of a performance practice. This research focuses on quantised spatial organisation of musical parameters that can be categorised as grid music systems (GMSs), and interactive music systems based on them. The research explores and surveys existing and historical uses of GMSs, and develops and demonstrates the use of a novel grid music system designed for whole body interaction. Grid music systems provide plotting of spatialised input to construct patterned music on a two-dimensional grid layout. GMSs are navigated to construct a sequence of parametric steps, for example a series of pitches, rhythmic values, a chord sequence, or terraced dynamic steps. While they are conceptually simple when only controlling one musical dimension, grid systems may be layered to enable complex and satisfying musical results. These systems have proved a viable, effective, accessible and engaging means of music-making for the general user as well as the musician. GMSs have been widely used in electronic and digital music technologies, where they have generally been applied to small portable devices and software systems such as step sequencers and drum machines. This research shows that by scaling up a grid music system, music-making and musical improvisation are enhanced, gaining several advantages: (1) Full body location becomes the spatial input to the grid. The system becomes a partially immersive one in four related ways: spatially, graphically, sonically and musically. (2) Detection of body location by tracking enables hands-free operation, thereby allowing the playing of a musical instrument in addition to “playing” the grid system. (3) Visual information regarding musical parameters may be enhanced so that the performer may fully engage with existing spatial knowledge of musical materials. The result is that existing spatial knowledge is overlaid on, and combined with, music-space. Music-space is a new concept produced by the research, and is similar to notions of other musical spaces including soundscape, acoustic space, Smalley's “circumspace” and “immersive space” (2007, 48-52), and Lotis's “ambiophony” (2003), but is rather more textural and “alive”—and therefore very conducive to interaction. Music-space is that space occupied by music, set within normal space, which may be perceived by a person located within, or moving around in that space. Music-space has a perceivable “texture” made of tensions and relaxations, and contains spatial patterns of these formed by musical elements such as notes, harmonies, and sounds, changing over time. The music may be performed by live musicians, created electronically, or be prerecorded. Large-scale GMSs have the capability not only to interactively display musical information as music representative space, but to allow music-space to co-exist with it. Moving around the grid, the performer may interact in real time with musical materials in music-space, as they form over squares or move in paths. Additionally he/she may sense the textural matrix of the music-space while being immersed in surround sound covering the grid. The HarmonyGrid is a new computer-based interactive performance system developed during this research that provides a generative music-making system intended to accompany, or play along with, an improvising musician. This large-scale GMS employs full-body motion tracking over a projected grid. Playing with the system creates an enhanced performance employing live interactive music, along with graphical and spatial activity. Although one other experimental system provides certain aspects of immersive music-making, currently only the HarmonyGrid provides an environment to explore and experience music-space in a GMS.
Resumo:
In this editorial letter, we provide the readers of Information Systems with a birds-eye introduction to Process-aware Information Systems (PAIS) – a sub-field of Information Systems that has drawn growing attention in the past two decades, both as an engineering and as a management discipline. Against this backdrop, we briefly discuss how the papers included in this special issue contribute to extending the body of knowledge in this field.
Resumo:
Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.
Resumo:
The final shape of the "Internet of Things" ubiquitous computing promises relies on a cybernetic system of inputs (in the form of sensory information), computation or decision making (based on the prefiguration of rules, contexts, and user-generated or defined metadata), and outputs (associated action from ubiquitous computing devices). My interest in this paper lies in the computational intelligences that suture these positions together, and how positioning these intelligences as autonomous agents extends the dialogue between human-users and ubiquitous computing technology. Drawing specifically on the scenarios surrounding the employment of ubiquitous computing within aged care, I argue that agency is something that cannot be traded without serious consideration of the associated ethics.
Resumo:
This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.
Resumo:
Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.
Resumo:
Notwithstanding the obvious potential advantages of information and communications technology (ICT) in the enhanced provision of healthcare services, there are some concerns associated with integration of and access to electronic health records. A security violation in health records, such as an unauthorised disclosure or unauthorised alteration of an individual's health information, can significantly undermine both healthcare providers' and consumers' confidence and trust in e-health systems. A crisis in confidence in any national level e-health system could seriously degrade the realisation of the system's potential benefits. In response to the privacy and security requirements for the protection of health information, this research project investigated national and international e-health development activities to identify the necessary requirements for the creation of a trusted health information system architecture consistent with legislative and regulatory requirements and relevant health informatics standards. The research examined the appropriateness and sustainability of the current approaches for the protection of health information. It then proposed an architecture to facilitate the viable and sustainable enforcement of privacy and security in health information systems under the project title "Open and Trusted Health Information Systems (OTHIS)". OTHIS addresses necessary security controls to protect sensitive health information when such data is at rest, during processing and in transit with three separate and achievable security function-based concepts and modules: a) Health Informatics Application Security (HIAS); b) Health Informatics Access Control (HIAC); and c) Health Informatics Network Security (HINS). The outcome of this research is a roadmap for a viable and sustainable architecture for providing robust protection and security of health information including elucidations of three achievable security control subsystem requirements within the proposed architecture. The successful completion of two proof-of-concept prototypes demonstrated the comprehensibility, feasibility and practicality of the HIAC and HIAS models for the development and assessment of trusted health systems. Meanwhile, the OTHIS architecture has provided guidance for technical and security design appropriate to the development and implementation of trusted health information systems whilst simultaneously offering guidance for ongoing research projects. The socio-economic implications of this research can be summarised in the fact that this research embraces the need for low cost security strategies against economic realities by using open-source technologies for overall test implementation. This allows the proposed architecture to be publicly accessible, providing a platform for interoperability to meet real-world application security demands. On the whole, the OTHIS architecture sets a high level of security standard for the establishment and maintenance of both current and future health information systems. This thereby increases healthcare providers‘ and consumers‘ trust in the adoption of electronic health records to realise the associated benefits.
Resumo:
In an age where digital innovation knows no boundaries, research in the area of brain-computer interface and other neural interface devices go where none have gone before. The possibilities are endless and as dreams become reality, the implications of these amazing developments should be considered. Some of these new devices have been created to correct or minimise the effects of disease or injury so the paper discusses some of the current research and development in the area, including neuroprosthetics. To assist researchers and academics in identifying some of the legal and ethical issues that might arise as a result of research and development of neural interface devices, using both non-invasive techniques and invasive procedures, the paper discusses a number of recent observations of authors in the field. The issue of enhancing human attributes by incorporating these new devices is also considered. Such enhancement may be regarded as freeing the mind from the constraints of the body, but there are legal and moral issues that researchers and academics would be well advised to contemplate as these new devices are developed and used. While different fact situation surround each of these new devices, and those that are yet to come, consideration of the legal and ethical landscape may assist researchers and academics in dealing effectively with matters that arise in these times of transition. Lawyers could seek to facilitate the resolution of the legal disputes that arise in this area of research and development within the existing judicial and legislative frameworks. Whether these frameworks will suffice, or will need to change in order to enable effective resolution, is a broader question to be explored.
Resumo:
Small business has been shown to contribute significantly to a nation’s economic development. Small business owners typically confront challenges, uncertainty, and risks while operating new businesses. Franchising has become a way to minimize the risks of small business management (Chiou et al., 2004); however, a franchise system is not a guarantee of business success (Lee and Karkovista, 2001). A poor franchising relationship between franchisors and franchisees can result in franchise failure, such as termination and closure, or franchisee exit (Frazer and Winzar, 2005).
Resumo:
The safety risk management process describes the systematic application of management policies, procedures and practices to the activities of communicating, consulting, establishing the context, and identifying, analysing, evaluating, treating, monitoring and reviewing risk. This process is undertaken to provide assurances that the risks of a particular unmanned aircraft system activity have been managed to an acceptable level. The safety risk management process and its outcomes form part of the documented safety case necessary to obtain approvals for unmanned aircraft system operations. It also guides the development of an organisation’s operations manual and is a primary component of an organisation’s safety management system. The aim of this chapter is to provide existing risk practitioners with a high level introduction to some of the unique issues and challenges in the application of the safety risk management process to unmanned aircraft systems. The scope is limited to safety risks associated with the operation of unmanned aircraft in the civil airspace system and over inhabited areas. The structure of the chapter is based on the safety risk management process as defined by the international risk management standard ISO 31000:2009 and draws on aviation safety resources provided by International Civil Aviation Organization, the Federal Aviation Administration and U.S. Department of Defense. References to relevant aviation safety regulations, programs of research and fielded systems are also provided.
Resumo:
On the road, near collision events (also close calls or near-miss incidents) largely outnumber actual crashes, yet most of them can never be recorded by current traffic data collection technologies or crashes analysis tools. The analysis of near collisions data is an important step in the process of reducing the crash rate. There have been several studies that have investigated near collisions; to our knowledge, this is the first study that uses the functionalities provided by cooperative vehicles to collect near misses information. We use the VISSIM traffic simulator and a custom C++ engine to simulate cooperative vehicles and their ability to detect near collision events. Our results showed that, within a simple simulated environment, adequate information on near collision events can be collected using the functionalities of cooperative perception systems. The relationship between the ratio of detected events and the ratio of equipped vehicle was shown to closely follow a squared law, and the largest source of nondetection was packet loss instead of packet delays and GPS imprecision.
Resumo:
We address the problem of constructing randomized online algorithms for the Metrical Task Systems (MTS) problem on a metric δ against an oblivious adversary. Restricting our attention to the class of “work-based” algorithms, we provide a framework for designing algorithms that uses the technique of regularization. For the case when δ is a uniform metric, we exhibit two algorithms that arise from this framework, and we prove a bound on the competitive ratio of each. We show that the second of these algorithms is ln n + O(loglogn) competitive, which is the current state-of-the art for the uniform MTS problem.
Resumo:
Crowdsourcing harnesses the potential of large and open networks of people. It is a relatively new phenomenon and attracted substantial interest in practice. Related research, however, lacks a theoretical foundation. We propose a system-theoretical perspective on crowdsourcing systems to address this gap and illustrate its applicability by using it to classify crowdsourcing systems. By deriving two principal dimensions from theory, we identify four fundamental types of crowdsourcing systems that help to distinguish important features of such systems. We analyse their respective characteristics and discuss implications and requirements for various aspects related to the design of such systems. Our results demonstrate that systems theory can inform the study of crowdsourcing systems. The identified system types and the implications on their design may prove useful for researchers to frame future studies and for practitioners to identify the right crowdsourcing systems for a particular purpose.