598 resultados para Spatial processes
Resumo:
Literacy Theories for the Digital Age insightfully brings together six essential approaches to literacy research and educational practice. The book provides powerful and accessible theories for readers, including Socio-cultural, Critical, Multimodal, Socio-spatial, Socio-material and Sensory Literacies. The brand new Sensory Literacies approach is an original and visionary contribution to the field, coupled with a provocative foreword from leading sensory anthropologist David Howes. This dynamic collection explores a legacy of literacy research while showing the relationships between each paradigm, highlighting their complementarity and distinctions. This highly relevant compendium will inspire readers to explore new frontiers of thought and practice in times of diversity and technological change.
Resumo:
This paper aims to contribute to an understanding of what actually takes place during consulting engagements. It draws on data collected from a qualitative case study of eight engagements by a niche consultancy in Australia to describe how consultants actively engage boundary crossing processes to address knowledge boundaries encountered during formal interactions with clients. While consultants actively managed knowledge boundary processes during interactions, by applying techniques such as evoking an ‘ideal state’ for clients, the engagements also yielded many missed opportunities for knowledge transformation.
Resumo:
Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.
Resumo:
The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.
Resumo:
This thesis aims to expand our understanding of imagining in the spatial design disciplines of architecture and interior design. More than three decades after Lawson’s statement, the matter of “what goes on in a designer’s head”, or imagining and mental problem solving remains just as mysterious and just as pertinent, possibly more so given the social and environmental challenges facing humankind. The lines on a page, the small perspective sketches, the connection of lines and scrawled notes and other clues help us understand what may be going on in the mind of the architect or designer. However, how designers know that space intimately before it is built is not greatly understood and articulated – even by designers themselves. There is a gap in the market in terms of informed exploration of the thinking that occurs during the design process, and how this is translated into physical outcomes. In other words, what do we see in our mind’s eye during the design process? This thesis explores design thinking and design process; what we ‘see’ when we draw, what we ‘see’ when we design.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
The current state of knowledge in relation to first flush does not provide a clear understanding of the role of rainfall and catchment characteristics in influencing this phenomenon. This is attributed to the inconsistent findings from research studies due to the unsatisfactory selection of first flush indicators and how first flush is defined. The research study discussed in this thesis provides the outcomes of a comprehensive analysis on the influence of rainfall and catchment characteristics on first flush behaviour in residential catchments. Two sets of first flush indicators are introduced in this study. These indicators were selected such that they are representative in explaining in a systematic manner the characteristics associated with first flush. Stormwater samples and rainfall-runoff data were collected and recorded from stormwater monitoring stations established at three urban catchments at Coomera Waters, Gold Coast, Australia. In addition, historical data were also used to support the data analysis. Three water quality parameters were analysed, namely, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The data analyses were primarily undertaken using multi criteria decision making methods, PROMETHEE and GAIA. Based on the data obtained, the pollutant load distribution curve (LV) was determined for the individual rainfall events and pollutant types. Accordingly, two sets of first flush indicators were derived from the curve, namely, cumulative load wash-off for every 10% of runoff volume interval (interval first flush indicators or LV) from the beginning of the event and the actual pollutant load wash-off during a 10% increment in runoff volume (section first flush indicators or P). First flush behaviour showed significant variation with pollutant types. TSS and TP showed consistent first flush behaviour. However, the dissolved fraction of TN showed significant differences to TSS and TP first flush while particulate TN showed similarities. Wash-off of TSS, TP and particulate TN during the first 10% of the runoff volume showed no influence from corresponding rainfall intensity. This was attributed to the wash-off of weakly adhered solids on the catchment surface referred to as "short term pollutants" or "weakly adhered solids" load. However, wash-off after 10% of the runoff volume showed dependency on the rainfall intensity. This is attributed to the wash-off of strongly adhered solids being exposed when the weakly adhered solids diminish. The wash-off process was also found to depend on rainfall depth at the end part of the event as the strongly adhered solids are loosened due to impact of rainfall in the earlier part of the event. Events with high intensity rainfall bursts after 70% of the runoff volume did not demonstrate first flush behaviour. This suggests that rainfall pattern plays a critical role in the occurrence of first flush. Rainfall intensity (with respect to the rest of the event) that produces 10% to 20% runoff volume play an important role in defining the magnitude of the first flush. Events can demonstrate high magnitude first flush when the rainfall intensity occurring between 10% and 20% of the runoff volume is comparatively high while low rainfall intensities during this period produces low magnitude first flush. For events with first flush, the phenomenon is clearly visible up to 40% of the runoff volume. This contradicts the common definition that first flush only exists, if for example, 80% of the pollutant mass is transported in the first 30% of runoff volume. First flush behaviour for TN is different compared to TSS and TP. Apart from rainfall characteristics, the composition and the availability of TN on the catchment also play an important role in first flush. The analysis confirmed that events with low rainfall intensity can produce high magnitude first flush for the dissolved fraction of TN, while high rainfall intensity produce low dissolved TN first flush. This is attributed to the source limiting behaviour of dissolved TN wash-off where there is high wash-off during the initial part of a rainfall event irrespective of the intensity. However, for particulate TN, the influence of rainfall intensity on first flush characteristics is similar to TSS and TP. The data analysis also confirmed that first flush can occur as high magnitude first flush, low magnitude first flush or non existence of first flush. Investigation of the influence of catchment characteristics on first flush found that the key factors that influence the phenomenon are the location of the pollutant source, spatial distribution of the pervious and impervious surfaces in the catchment, drainage network layout and slope of the catchment. This confirms that first flush phenomenon cannot be evaluated based on a single or a limited set of parameters as a number of catchment characteristics should be taken into account. Catchments where the pollutant source is located close to the outlet, a high fraction of road surfaces, short travel time to the outlet, with steep slopes can produce high wash-off load during the first 50% of the runoff volume. Rainfall characteristics have a comparatively dominant impact on the wash-off process compared to the catchment characteristics. In addition, the pollutant characteristics also should be taken into account in designing stormwater treatment systems due to different wash-off behaviour. Analysis outcomes confirmed that there is a high TSS load during the first 20% of the runoff volume followed by TN which can extend up to 30% of the runoff volume. In contrast, high TP load can exist during the initial and at the end part of a rainfall event. This is related to the composition of TP available for the wash-off.
Resumo:
Construction contracts often provide that the decision of an independent certifier is final and binding. The effect of a contractual term like this has been debated in the courts over time. This paper considers the binding nature of certificates in the context of traditional construction contract arrangements and also considers the implications for more complex contracts like those entered into to facilitate public private partnerships. This article considers the response of the courts and the drafting implications and argues that a different focus would be advantageous.
Resumo:
The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.
Resumo:
Semi-conducting phase I CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), which is of considerable interest as a switching device for memory storage materials, can be electrocrystallized from CH3CN via two distinctly different pathways when TCNQ is reduced to TCNQ˙− in the presence of [Cu(MeCN)4]+. The first pathway, identified in earlier studies, occurs at potentials where TCNQ is reduced to TCNQ˙− and involves a nucleation–growth mechanism at preferred sites on the electrode to produce arrays of well separated large branched needle-shaped phase I CuTCNQ crystals. The second pathway, now identified at more negative potentials, generates much smaller needle-shaped phase I CuTCNQ crystals. These electrocrystallize on parts of the surface not occupied in the initial process and give rise to film-like characteristics. This process is attributed to the reduction of Cu+[(TCNQ˙−)(TCNQ)] or a stabilised film of TCNQ via a solid–solid conversion process, which also involves ingress of Cu+via a nucleation–growth mechanism. The CuTCNQ surface area coverage is extensive since it occurs at all areas of the electrode and not just at defect sites that dominate the crystal formation sites for the first pathway. Infrared spectra, X-ray diffraction, surface plasmon resonance, quartz crystal microbalance, scanning electron microscopy and optical image data all confirm that two distinctly different pathways are available to produce the kinetically-favoured and more highly conducting phase I CuTCNQ solid, rather than the phase II material.
Resumo:
Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.
Resumo:
Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.
Resumo:
The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.
Resumo:
Asset service organisations often recognize asset management as a core competence to deliver benefits to their business. But how do organizations know whether their asset management processes are adequate? Asset management maturity models, which combine best practices and competencies, provide a useful approach to test the capacity of organisations to manage their assets. Asset management frameworks are required to meet the dynamic challenges of managing assets in contemporary society. Although existing models are subject to wide variations in their implementation and sophistication, they also display a distinct weakness in that they tend to focus primarily on the operational and technical level and neglect the levels of strategy, policy and governance as well as the social and human resources – the people elements. Moreover, asset management maturity models have to respond to the external environmental factors, including such as climate change and sustainability, stakeholders and community demand management. Drawing on five dimensions of effective asset management – spatial, temporal, organisational, statistical, and evaluation – as identified by Amadi Echendu et al. [1], this paper carries out a comprehensive comparative analysis of six existing maturity models to identify the gaps in key process areas. Results suggest incorporating these into an integrated approach to assess the maturity of asset-intensive organizations. It is contended that the adoption of an integrated asset management maturity model will enhance effective and efficient delivery of services.
Resumo:
This research explores the relationship between international entrepreneurship characteristics and the use of Internet capabilities for the international business processes of the firm. It has been suggested, that the accumulation of a firms Internet capability can assist international operations, especially when operating in fast changing dynamic Internet environments. However, international entrepreneurship characteristics which are seen as a precursor to leveraging Internet capabilities are still vague. Given this finding, eight case studies of small and medium sized travel and tourism firms were selected to investigate the influence of international entrepreneurship characteristics, and Internet capabilities for international business processes. Based on the eight in-depth case studies, the results signify that successful international entrepreneurial firms which encompass high levels of international innovativeness and proactiveness behaviour integrate Internet capabilities to a greater degree. Our findings also indicate that the prior international business experience, international risk-taking propensity and international networking characteristics are not necessarily precursors to successful integration of Internet capabilities for international business processes. On the contrary, international business experience and international networks actually lead to a reliance on traditional mechanisms of internationalisation and can dilute the development of Internet capabilities for international business processes.