838 resultados para Science centre
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
Investigations into the relative effectiveness of either focusing on movement form (internal focus) or movement effects (external focus) have tended to dominate research on instructional constraints. However, rather than adopting a comparative approach to determine which focus of attention is more effective, analysis of the relative efficacy of each specific instruction focus during motor learning could be more relevant for both researchers and practitioners. Theoretical advances in the motor learning literature from a nonlinear dynamics perspective might explain the processes that underlie the effect of different attentional focus instructions. Referencing ideas and concepts from a current motor learning model, differential effects of either internal or external focus of instructions are examined. This paper also highlights some deficiencies in extant theory and research design on focus of attention which require further investigations.
Resumo:
In this paper we present a real-time foreground–background segmentation algorithm that exploits the following observation (very often satisfied by a static camera positioned high in its environment). If a blob moves on a pixel p that had not changed its colour significantly for a few frames, then p was probably part of the background when its colour was static. With this information we are able to update differentially pixels believed to be background. This work is relevant to autonomous minirobots, as they often navigate in buildings where smart surveillance cameras could communicate wirelessly with them. A by-product of the proposed system is a mask of the image regions which are demonstrably background. Statistically significant tests show that the proposed method has a better precision and recall rates than the state of the art foreground/background segmentation algorithm of the OpenCV computer vision library.
Resumo:
Daylighting in tropical and sub-tropical climates presents a unique challenge that is generally not well understood by designers. In a sub-tropical region such as Brisbane, Australia the majority of the year comprises of sunny clear skies with few overcast days and as a consequence windows can easily become sources of overheating and glare. The main strategy in dealing with this issue is extensive shading on windows. However, this in turn prevents daylight penetration into buildings often causing an interior to appear gloomy and dark even though there is more than sufficient daylight available. As a result electric lighting is the main source of light, even during the day. Innovative daylight devices which redirect light from windows offer a potential solution to this issue. These devices can potentially improve daylighting in buildings by increasing the illumination within the environment decreasing the high contrast between the window and work regions and deflecting potentially glare causing sunlight away from the observer. However, the performance of such innovative daylighting devices are generally quantified under overcast skies (i.e. daylight factors) or skies without sun, which are typical of European climates and are misleading when considering these devices for tropical or sub-tropical climates. This study sought to compare four innovative window daylighting devices in RADIANCE; light shelves, laser cut panels, micro-light guides and light redirecting blinds. These devices were simulated in RADIANCE under sub-tropical skies (for Brisbane) within the test case of a typical CBD office space. For each device the quantity of light redirected and its distribution within the space was used as the basis for comparison. In addition, glare analysis on each device was conducted using Weinold and Christoffersons evalglare. The analysis was conducted for selected hours for a day in each season. The majority of buildings that humans will occupy in their lifetime are already constructed, and extensive remodelling of most of these buildings is unlikely. Therefore the most effective way to improve daylighting in the near future will be through the alteration existing window spaces. Thus it will be important to understand the performance of daylighting systems with respect to the climate it is to be used in. This type of analysis is important to determine the applicability of a daylighting strategy so that designers can achieve energy efficiency as well the health benefits of natural daylight.
Resumo:
Mycobacterium lentiflavum, a slow-growing nontuberculous mycobacterium, is a rare cause of human disease. It has been isolated from environmental samples worldwide. To assess the clinical significance of M. lentiflavum isolates reported to the Queensland Tuberculosis Control Centre, Australia, during 2001-2008, we explored the genotypic similarity and geographic relationship between isolates from humans and potable water in the Brisbane metropolitan area. A total of 47 isolates from 36 patients were reported; 4 patients had clinically significant disease. M. lentiflavum was cultured from 13 of 206 drinking water sites. These sites overlapped geographically with home addresses of the patients who had clinically significant disease. Automated repetitive sequence-based PCR genotyping showed a dominant environmental clone closely related to clinical strains. This finding suggests potable water as a possible source of M. lentiflavum infection in humans.
Resumo:
The role of ecological constraints on the acquisition of sport expertise is gaining attention in sport science, although more research is needed. In this position paper we provide an ecological explanation for expertise acquisition, as alluding to qualitative data that support the idea that unconventional, even aversive, environmental constraints may play an important role in the development of world-class athletes. We exemplify this argument by profiling the role of unconventional practice environments using association football in Brazilian society as a task vehicle. Contrary to the traditional idea that only deliberate training and development programmes can lead to the evolution of expertise, we propose how expert performance might be gained through highly unstructured activities in Brazilian football, that represent a powerful and little understood implicit environmental constraint that can lead to expertise development in sport.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or intrinsic (retinal) network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18–30 years) with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux). Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO) was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells mediate this circadian variation.
Resumo:
Subtropical Design in South East Queensland provides a direct link between climatic design, applied urban design and sustainable planning policy. The role that character and identity of a place plays in achieving environmental sustainability is explained. Values of local distinctiveness to do with climate, landscape and culture are identified and the environmental, social and economic benefits of applying subtropical design principles to planning are described. The handbook provides planners and urban designers with an understanding of how subtropical design principles apply within the different contexts of urban planning including the entire spectrum of urban scales from the regional scale, to the city, neighbourhood, street, individual building or site. Twelve interactive principles, and interrelated strategies, drawn predominantly from the body of knowledge of landscape architecture, architectural science and urban design are described in detail in text, and richly illustrated with diagrams and photographs.
Resumo:
Recent perceptual-motor studies have revealed variations in learning trajectories of novices. Despite such observation, relatively little attention has been paid to studying individual differences in experienced performers’ perceptual-motor behaviors. The present study examined individual differences for a visual anticipation task. Experienced association football goalkeepers attempted to intercept penalty kicks taken with deceptive and non-deceptive kicking actions. Data revealed that differences in the action capabilities of goalkeepers affected the timing and accuracy of movement response behaviors. Faster goalkeepers tended to wait until later before initiating movement in comparison with slower goalkeepers. The study of affordances in sport environments offers a theoretical framework with which to overcome some of the reported methodological limitations in the visual anticipation literature.
Student autonomy enhancing science learning : Observations from a Primary Connections implementation
Resumo:
This case study involved a detailed analysis of the changes in beliefs and teaching practices of teachers who adopted the Primary Connections program as a professional development initiative. When implementing an inquiry-based learning model, teachers observed that their students learnt more when they intervened less. By scaffolding open-ended nquiries they achieved more diverse, complex and thorough learning outcomes than previously achieved with teacher-led discussions or demonstrations. Initially, student autonomy presented erceived threats to teachers, including possible selection of topics outside the teachers’ science knowledge. In practice, when such issues arose, resolving them became a stimulating part of the earning for both teachers and students. The teachers’ observation of enhanced student learning became a powerful motivator for change in their beliefs and practices. Implications for developers of PD programs are (1) the importance of modeling student-devised inquiries, and (2) recognising the role of successful classroom implementation in facilitating change.
Resumo:
In the structure of the title salt, C12H12N3+ C6H2N3O7-, the diazenyl group of the 4-(phenyldiazenyl)aniline molecule is protonated and forms a hydrogen bond with the phenolate O acceptor of the picrate anion. Structure extension occurs through two symmetrical inter-ion three-centre amine N---H...O,O'(nitro) hydrogen-bonding associations [graph set R2/1(4)] giving a convoluted two-dimensional network structure.
Resumo:
Buildings and infrastructure represent principal assets of any national economy as well as prime sources of environmental degradation. Making them more sustainable represents a key challenge for the construction, planning and design industries and governments at all levels; and the rapid urbanisation of the 21st century has turned this into a global challenge. This book embodies the results of a major research programme by members of the Australia Co-operative Research Centre for Construction Innovation and its global partners, presented for an international audience of construction researchers, senior professionals and advanced students. It covers four themes, applied to regeneration as well as to new build, and within the overall theme of Innovation: Sustainable Materials and Manufactures, focusing on building material products, their manufacture and assembly – and the reduction of their ecological ‘fingerprints’, the extension of their service lives, and their re-use and recyclability. It also explores the prospects for applying the principles of the assembly line. Virtual Design, Construction and Management, viewed as increasing sustainable development through automation, enhanced collaboration (such as virtual design teams), real time BL performance assessment during design, simulation of the construction process, life-cycle management of project information (zero information loss) risk minimisation, and increased potential for innovation and value adding. Integrating Design, Construction and Facility Management over the Project Life Cycle, by converging ICT, design science engineering and sustainability science. Integration across spatial scales, enabling building–infrastructure synergies (such as water and energy efficiency). Convergences between IT and design and operational processes are also viewed as a key platform increased sustainability.