643 resultados para Reveal
Resumo:
In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.
Resumo:
Much of what we currently understand about the structure and energetics of multiply charged anions in the gas phase is derived from the measurement of photoelectron spectra of simple dicarboxylate dianions. Here we have employed a modified linear ion-trap mass spectrometer to undertake complementary investigations of the ionic products resulting from laser-initiated electron photodetachment of two model dianions. Electron photodetachment (ePD) of the \[M-2H](2-) dianions formed from glutaric and adipic acid were found to result in a significant loss of ion signal overall, which is consistent with photoelectron studies that report the emission of slow secondary electrons (Xing et al., 2010 \[201). The ePD mass spectra reveal no signals corresponding to the intact \[M-2H](center dot-) radical anions, but rather \[M-2H-CO2](center dot-) ions are identified as the only abundant ionic products indicating that spontaneous decarboxylation follows ejection of the first electron. Interestingly however, investigations of the structure and energetics of the \[M-2H-CO2](center dot-) photoproducts by ion-molecule reaction and electronic structure calculation indicate that (i) these ions are stable with respect to secondary electron detachment and (ii) most of the ion population retains a distonic radical anion structure where the radical remains localised at the position of the departed carboxylate moiety. These observations lead to the conclusion that the mechanism for loss of ion signal involves unimolecular rearrangement reactions of the nascent \[M-2H](center dot-) carbonyloxyl radical anions that compete favourably with direct decarboxylation. Several possible rearrangement pathways that facilitate electron detachment from the radical anion are identified and are computed to be energetically accessible. Such pathways provide an explanation for prior observations of slow secondary electron features in the photoelectron spectra of the same dicaboxylate dianions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for \[M + X](+) ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.
Resumo:
The complete structural elucidation of complex lipids, including glycerophospholipids, using only mass spectrometry represents a major challenge to contemporary analytical technologies. Here, we demonstrate that product ions arising from the collision-induced dissociation (CID) of the [M + Na] + adduct ions of phospholipids can be isolated and subjected to subsequent gas-phase ozonolysis-known as ozone-induced dissociation (OzID)-in a linear ion-trap mass spectrometer. The resulting CID/OzID experiment yields abundant product ions that are characteristic of the acyl substitution on the glycerol backbone (i.e., sn-position). This approach is shown to differentiate sn-positional isomers, such as the regioisomeric phosphatidylcholine pair of PC 16:0/18:1 and PC 18:1/16:0. Importantly, CID/OzID provides a sensitive diagnostic for the existence of an isomeric mixture in a given sample. This is of very high value for the analysis of tissue extracts since CID/OzID analyses can reveal changes in the relative abundance of isomeric constituents even within different tissues from the same animal. Finally, we demonstrate the ability to assign carbon-carbon double bond positions to individual acyl chains at specific backbone positions by adding subsequent CID and/or OzID steps to the workflow and that this can be achieved in a single step using a hybrid triple quadrupole-linear ion trap mass spectrometer. This unique approach represents the most complete and specific structural analysis of lipids by mass spectrometry demonstrated to date and is a significant step towards comprehensive top-down lipidomics. This journal is © The Royal Society of Chemistry 2014. Grant Number ARC/DP0986628, ARC/FT110100249, ARC/LP110200648
Resumo:
RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.
Resumo:
Background The transfer and/or retrieval of a critically patient is inherently dangerous not only for the patient but for staff as well. The quality and experience of unplanned transfers can influence patient mortality and morbidity. However, international evidence suggests that dedicated transfer/retrieval teams can improve mortality and morbidity outcomes. Aims The initial aim of this paper is to describe an in-house competency-based training programme, which encompasses the STaR approach to develop members of our existing nursing team to be part of the dedicated transfer/retrieval service. The paper also presents audit data findings which examined the source of referrals, number of patients actually transferred and clinical status of those being transferred. Results Audit data illustrate that the most frequent source of referrals comes from Accident and Emergency and the Surgical Directorate with the most common presenting condition being cardio-respiratory failure or arrest. Audit data reveal that the number of patients actually transferred or retrieved is relatively small (33%) compared with the overall number of requests for assistance. However, 36% of those patients transferred had a level 2 or level 3 acuity status that necessitated the admission to a critical care area. Conclusions A number of studies have concluded that the ill-experienced and ill-equipped transfer team can place patients’ at serious risk of harm. Whether planned or unplanned, dedicated critical care transfer/retrieval teams have been shown to reduce patient mortality and morbidity.
Resumo:
Shared Material on Dying is a trio/solo work commissioned by Jenny Roche and the Dublin Dance Festival in 2008 from choreographer Liz Roche. Touring widely since its creation, it continues to be a rich research environment for the interrogation by Jenny Roche of the dancer’s first-person perspective in choreographic production and performance. The research perspective drawn from the live performance of this iteration was how the exploration of the same dancing moment might be expressed from multiple perspectives by three different dancers and what this might reveal about the dancer’s inner configuring of the performance environment. Erin Manning (2009) describes the unstable and emergent moment before movement materialises as the preacceleration of the movement, when the potentialities of the gesture collapse and stabilize into form. It is this threshold of potentiality that is interesting, the moment before the dance happens when the configuring process of the dancer brings it into being. Cynthia Roses Thema (2007), after neuroscientist Antonio Damasio, writes that embodied experience is mapped as it unfolds and alters from moment to moment in line with a constantly changing internal milieu. As a performer in this piece, I explored the inner terrain of the three performers (myself included) by externalizing these inner states. This research contributed to a paper presentation at the Digital Resources for the Arts and Humanities Conference, UK 2013.
Resumo:
Significant attention has been given in urban policy literature to the integration of land-use and transport planning and policies—with a view to curbing sprawling urban form and diminishing externalities associated with car-dependent travel patterns. By taking land-use and transport interaction into account, this debate mainly focuses on how a successful integration can contribute to societal well-being, providing efficient and balanced economic growth while accomplishing the goal of developing sustainable urban environments and communities. The integration is also a focal theme of contemporary urban development models, such as smart growth, liveable neighbourhoods, and new urbanism. Even though available planning policy options for ameliorating urban form and transport-related externalities have matured—owing to growing research and practice worldwide—there remains a lack of suitable evaluation models to reflect on the current status of urban form and travel problems or on the success of implemented integration policies. In this study we explore the applicability of indicator-based spatial indexing to assess land-use and transport integration at the neighbourhood level. For this, a spatial index is developed by a number of indicators compiled from international studies and trialled in Gold Coast, Queensland, Australia. The results of this modelling study reveal that it is possible to propose an effective metric to determine the success level of city plans considering their sustainability performance via composite indicator methodology. The model proved useful in demarcating areas where planning intervention is applicable, and in identifying the most suitable locations for future urban development and plan amendments. Lastly, we integrate variance-based sensitivity analysis with the spatial indexing method, and discuss the applicability of the model in other urban contexts.
Resumo:
In the context of modern western psychologised, techno-social hybrid realities, where individuals are incited constantly to work on themselves and perform their self-development in public, the use of online social networking sites (SNSs) can be conceptualised as what Foucault has described as a ‘technique of self’. This article explores examples of status updates on Facebook to reveal that writing on Facebook is a tool for self-formation with historical roots. Exploring examples of self-writing from the past, and considering some of the continuities and discontinuities between these age-old practices and their modern translations, provides a non-technologically deterministic and historically aware way of thinking about the use of new media technologies in modern societies that understands them to be more than mere tools for communication.
Resumo:
Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.
Resumo:
Despite board meetings representing the main arena where directors discharge their duties and make critical corporate decisions, we know little about what occurs in the boardroom. Consequently, there is increasing academic interest in understanding how meetings are run and how directors participate. This study contributes to this emerging literature by exploring the impact of board meeting arrangements on directors’ interactions and perceptions of meeting effectiveness. We video-taped board meetings at two Australian corporations operating in the same industry and use an in-depth analysis of interactions and board processes to reveal that a rather small difference in meeting arrangements (i.e. the timing and length of meetings) had a significant influence on interaction patterns. Specifically, given significant amounts of environmental turbulence in the sector, director inclusiveness and participation were reduced as time pressure increased due to shorter meetings, lowering director perceptions of meeting effectiveness.
Resumo:
How do you identify "good" teaching practice in the complexity of a real classroom? How do you know that beginning teachers can recognise effective digital pedagogy when they see it? How can teacher educators see through their students’ eyes? The study in this paper has arisen from our interest in what pre-service teachers “see” when observing effective classroom practice and how this might reveal their own technological, pedagogical and content knowledge. We asked 104 pre-service teachers from Early Years, Primary and Secondary cohorts to watch and comment upon selected exemplary videos of teachers using ICT (information and communication technologies) in Science. The pre-service teachers recorded their observations using a simple PMI (plus, minus, interesting) matrix which were then coded using the SOLO Taxonomy to look for evidence of their familiarity with and judgements of digital pedagogies. From this, we determined that the majority of preservice teachers we surveyed were using a descriptive rather than a reflective strategy, that is, not extending beyond what was demonstrated in the teaching exemplar or differentiating between action and purpose. We also determined that this method warrants wider trialling as a means of evaluating students’ understandings of the complexity of the digital classroom.
Resumo:
The purpose of this research is to examine School Based Youth Health Nurses experience of partnerships for health education and team teaching. The School Based Youth Health Nurse Program is a contemporary model of school nursing in Queensland, Australia. The role of the School Based Youth Health Nurse consists of individual health consultations and health promotion. This research analyses a subset of qualitative data collected for a larger project about the experience of school based youth health nursing. The Health Promoting Schools model is used as a deductive framework. The findings reveal five subthemes across the three areas of the Health Promoting Schools approach. There are two subthemes within the curriculum, teaching and learning area; We were on the same page so to speak and I can go and do my reports or whatever. There are two sub-themes within the partnerships and services area; I had a beautiful science teacher who was just delightful and really just wanted to do things in partnerships and It’s all airy fairy arty farty stuff that’s not important. There is one theme in the school organisation, ethos and environment area; I just don’t know how well the top of these organisations communicate with the bottom of those organisations. Successful partnerships for health education and team teaching between school nurses and teachers are based on personal relationships based on rapport which lead to trust and reciprocity. Partnerships are limited by teachers understanding of the role of the school nurse and engagement with school nurses in the classroom. Administrative support from the top down is fundamental.