585 resultados para Respiration, Artificial [methods]
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.
Resumo:
The application of artificial intelligence in finance is relatively new area of research. This project employed artificial neural networks (ANNs) that use both fundamental and technical inputs to predict future prices of widely held Australian stocks and use these predicted prices for stock portfolio selection over a long investment horizon. The research involved the creation and testing of a large number of possible network configurations and draws conclusions about ANN architectures and their overall suitability for the purpose of stock portfolio selection.
Resumo:
Purpose To develop and use equations of spectacle magnification when the limiting stop is either the entrance pupil of the eye or an artificial pupil in front of a lens. Methods Spectacle magnification was determined for ophthalmic lenses in air and for water environments. The reference was the retinal image for an uncorrected eye in air with a natural pupil. Results When an artificial pupil is placed in front of lenses, spectacle magnification is hardly affected by lens power, unlike the usual situation where the natural pupil is used. The water environment provides interesting influences in which spectacle magnification is highly sensitive to the distance between the cornea and eye entrance pupil. In water, retinal images are approximately 18% bigger than in air. Wearing air-filled goggles in water increases retinal image size by about 13% compared with that when they are not worn. Conclusions The equations extend earlier understanding of spectacle magnification and should be useful for those wishing to determine magnification of ophthalmic lens systems when artificial pupils and environments such as water are used.
Resumo:
Porn studies researchers in the humanities have tended to use different research methods from those in social sciences. There has been surprisingly little conversation between the groups about methodology. This article presents a basic introduction to textual analysis and statistical analysis, aiming to provide for all porn studies researchers a familiarity with these two quite distinct traditions of data analysis. Comparing these two approaches, the article suggests that social science approaches are often strongly reliable – but can sacrifice validity to this end. Textual analysis is much less reliable, but has the capacity to be strongly valid. Statistical methods tend to produce a picture of human beings as groups, in terms of what they have in common, whereas humanities approaches often seek out uniqueness. Social science approaches have asked a more limited range of questions than have the humanities. The article ends with a call to mix up the kinds of research methods that are applied to various objects of study.
Resumo:
A large number of methods have been published that aim to evaluate various components of multi-view geometry systems. Most of these have focused on the feature extraction, description and matching stages (the visual front end), since geometry computation can be evaluated through simulation. Many data sets are constrained to small scale scenes or planar scenes that are not challenging to new algorithms, or require special equipment. This paper presents a method for automatically generating geometry ground truth and challenging test cases from high spatio-temporal resolution video. The objective of the system is to enable data collection at any physical scale, in any location and in various parts of the electromagnetic spectrum. The data generation process consists of collecting high resolution video, computing accurate sparse 3D reconstruction, video frame culling and down sampling, and test case selection. The evaluation process consists of applying a test 2-view geometry method to every test case and comparing the results to the ground truth. This system facilitates the evaluation of the whole geometry computation process or any part thereof against data compatible with a realistic application. A collection of example data sets and evaluations is included to demonstrate the range of applications of the proposed system.
Resumo:
Guaranteeing the quality of extracted features that describe relevant knowledge to users or topics is a challenge because of the large number of extracted features. Most popular existing term-based feature selection methods suffer from noisy feature extraction, which is irrelevant to the user needs (noisy). One popular method is to extract phrases or n-grams to describe the relevant knowledge. However, extracted n-grams and phrases usually contain a lot of noise. This paper proposes a method for reducing the noise in n-grams. The method first extracts more specific features (terms) to remove noisy features. The method then uses an extended random set to accurately weight n-grams based on their distribution in the documents and their terms distribution in n-grams. The proposed approach not only reduces the number of extracted n-grams but also improves the performance. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms the state-of-art methods underpinned by Okapi BM25, tf*idf and Rocchio.
Resumo:
Aims: To compare different methods for identifying alcohol involvement in injury-related emergency department presentation in Queensland youth, and to explore the alcohol terminology used in triage text. Methods: Emergency Department Information System data were provided for patients aged 12-24 years with an injury-related diagnosis code for a 5 year period 2006-2010 presenting to a Queensland emergency department (N=348895). Three approaches were used to estimate alcohol involvement: 1) analysis of coded data, 2) mining of triage text, and 3) estimation using an adaptation of alcohol attributable fractions (AAF). Cases were identified as ‘alcohol-involved’ by code and text, as well as AAF weighted. Results: Around 6.4% of these injury presentations overall had some documentation of alcohol involvement, with higher proportions of alcohol involvement documented for 18-24 year olds, females, indigenous youth, where presentations occurred on a Saturday or Sunday, and where presentations occurred between midnight and 5am. The most common alcohol terms identified for all subgroups were generic alcohol terms (eg. ETOH or alcohol) with almost half of the cases where alcohol involvement was documented having a generic alcohol term recorded in the triage text. Conclusions: Emergency department data is a useful source of information for identification of high risk sub-groups to target intervention opportunities, though it is not a reliable source of data for incidence or trend estimation in its current unstandardised form. Improving the accuracy and consistency of identification, documenting and coding of alcohol-involvement at the point of data capture in the emergency department is the most desirable long term approach to produce a more solid evidence base to support policy and practice in this field.
Resumo:
Purpose of review: Artificial corneas are being developed to meet a shortage of donor corneas as well as to address cases where allografting is contraindicated. A range of artificial corneas has been developed. Here we review several newer designs and especially those inspired by naturally occurring biomaterials found with the human body and elsewhere. Recent findings: Recent trends in the development of artificial corneas indicate a move towards the use of materials derived from native sources including decellularized corneal tissue and tissue substitutes synthesized by corneal cells in vitro when grown either on their own, or in conjunction with novel protein-based scaffolds. Biologically inspired materials are also being considered for implantation on their own with the view to promoting endogenous corneal tissue. Summary: More recent attempts at making artificial corneas have taken a more nature-based or nature-inspired approach. Several will in the near future be likely to be available clinically.
Resumo:
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performace of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made.
Resumo:
Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.
Resumo:
Camera-laser calibration is necessary for many robotics and computer vision applications. However, existing calibration toolboxes still require laborious effort from the operator in order to achieve reliable and accurate results. This paper proposes algorithms that augment two existing trustful calibration methods with an automatic extraction of the calibration object from the sensor data. The result is a complete procedure that allows for automatic camera-laser calibration. The first stage of the procedure is automatic camera calibration which is useful in its own right for many applications. The chessboard extraction algorithm it provides is shown to outperform openly available techniques. The second stage completes the procedure by providing automatic camera-laser calibration. The procedure has been verified by extensive experimental tests with the proposed algorithms providing a major reduction in time required from an operator in comparison to manual methods.
Resumo:
This paper proposes an approach to obtain a localisation that is robust to smoke by exploiting multiple sensing modalities: visual and infrared (IR) cameras. This localisation is based on a state-of-the-art visual SLAM algorithm. First, we show that a reasonably accurate localisation can be obtained in the presence of smoke by using only an IR camera, a sensor that is hardly affected by smoke, contrary to a visual camera (operating in the visible spectrum). Second, we demonstrate that improved results can be obtained by combining the information from the two sensor modalities (visual and IR cameras). Third, we show that by detecting the impact of smoke on the visual images using a data quality metric, we can anticipate and mitigate the degradation in performance of the localisation by discarding the most affected data. The experimental validation presents multiple trajectories estimated by the various methods considered, all thoroughly compared to an accurate dGPS/INS reference.
Resumo:
This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.