394 resultados para Prove it works


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road surface macrotexture is identified as one of the factors contributing to the surface's skid resistance. Existing methods of quantifying the surface macrotexture, such as the sand patch test and the laser profilometer test, are either expensive or intrusive, requiring traffic control. High-resolution cameras have made it possible to acquire good quality images from roads for the automated analysis of texture depth. In this paper, a granulometric method based on image processing is proposed to estimate road surface texture coarseness distribution from their edge profiles. More than 1300 images were acquired from two different sites, extending to a total of 2.96 km. The images were acquired using camera orientations of 60 and 90 degrees. The road surface is modeled as a texture of particles, and the size distribution of these particles is obtained from chord lengths across edge boundaries. The mean size from each distribution is compared with the sensor measured texture depth obtained using a laser profilometer. By tuning the edge detector parameters, a coefficient of determination of up to R2 = 0.94 between the proposed method and the laser profilometer method was obtained. The high correlation is also confirmed by robust calibration parameters that enable the method to be used for unseen data after the method has been calibrated over road surface data with similar surface characteristics and under similar imaging conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. It has been previously shown in our own work, and in the work of others, that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms the performance of either sub-system. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise