591 resultados para Distortion modelling
Resumo:
Fracture healing is a complicated coupling of many processes. Yet despite the apparent complexity, fracture repair is usually effective. There is, however, no comprehensive mathematical model addressing the multiple interactions of cells, cytokines and oxygen that includes extra-cellular matrix production and that results in the formation of the early stage soft callus. This thesis develops a one dimensional continuum transport model in the context of early fracture healing. Although fracture healing is a complex interplay of many local factors, critical components are identified and used to construct an hypothesis about regulation of the evolution of early callus formation. Multiple cell lines, cellular differentiation, oxygen levels and cytokine concentrations are examined as factors affecting this model of early bone repair. The model presumes diffusive and chemotactic cell migration mechanisms. It is proposed that the initial signalling regime and oxygen availability arising as consequences of bone fracture, are sufficient to determine the quantity and quality of early soft callus formation. Readily available software and purpose written algorithms have been used to obtain numerical solutions representative of various initial conditions. These numerical distributions of cellular populations reflect available histology obtained from murine osteotomies. The behaviour of the numerical system in response to differing initial conditions can be described by alternative in vivo healing pathways. An experimental basis, as illustrated in murine fracture histology, has been utilised to validate the mathematical model outcomes. The model developed in this thesis has potential for future extension, to incorporate processes leading to woven bone deposition, while maintaining the characteristics that regulate early callus formation.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and Exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an $R^2$ goodness of fit of 0.9994 and 0.9982 respectively over a 10 hour test period. The utility of the framework is demonstrated on a number of usage scenarios including real time monitoring and `what-if' analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
Bangkok Metropolitan Region (BMR) is the centre for various major activities in Thailand including political, industry, agriculture, and commerce. Consequently, the BMR is the highest and most densely populated area in Thailand. Thus, the demand for houses in the BMR is also the largest, especially in subdivision developments. For these reasons, the subdivision development in the BMR has increased substantially in the past 20 years and generated large numbers of subdivision developments (AREA, 2009; Kridakorn Na Ayutthaya & Tochaiwat, 2010). However, this dramatic growth of subdivision development has caused several problems including unsustainable development, especially for subdivision neighbourhoods, in the BMR. There have been rating tools that encourage the sustainability of neighbourhood design in subdivision development, but they still have practical problems. Such rating tools do not cover the scale of the development entirely; and they concentrate more on the social and environmental conservation aspects, which have not been totally accepted by the developers (Boonprakub, 2011; Tongcumpou & Harvey, 1994). These factors strongly confirm the need for an appropriate rating tool for sustainable subdivision neighbourhood design in the BMR. To improve level of acceptance from all stakeholders in subdivision developments industry, the new rating tool should be developed based on an approach that unites the social, environmental, and economic approaches, such as eco-efficiency principle. Eco-efficiency is the sustainability indicator introduced by the World Business Council for Sustainable Development (WBCSD) since 1992. The eco-efficiency is defined as the ratio of the product or service value according to its environmental impact (Lehni & Pepper, 2000; Sorvari et al., 2009). Eco-efficiency indicator is concerned to the business, while simultaneously, is concerned with to social and the environment impact. This study aims to develop a new rating tool named "Rating for sustainable subdivision neighbourhood design (RSSND)". The RSSND methodology is developed by a combination of literature reviews, field surveys, the eco-efficiency model development, trial-and-error technique, and the tool validation process. All required data has been collected by the field surveys from July to November 2010. The ecoefficiency model is a combination of three different mathematical models; the neighbourhood property price (NPP) model, the neighbourhood development cost (NDC) model, and the neighbourhood occupancy cost (NOC) model which are attributable to the neighbourhood subdivision design. The NPP model is formulated by hedonic price model approach, while the NDC model and NOC model are formulated by the multiple regression analysis approach. The trial-and-error technique is adopted for simplifying the complex mathematic eco-efficiency model to a user-friendly rating tool format. Credibility of the RSSND has been validated by using both rated and non-rated of eight subdivisions. It is expected to meet the requirements of all stakeholders which support the social activities of the residents, maintain the environmental condition of the development and surrounding areas, and meet the economic requirements of the developers.
Resumo:
Daylight devices are important components of any climate responsive façade system. But, the evolution of parametric CAD systems and digital fabrication has had an impact on architectural form so that regular forms are shifting to complex geometries. Architectural and engineering integration of daylight devices in envelopes with complex geometries is a challenge in terms of design and performance evaluation. The purpose of this paper is to assess daylight performance of a building with a climatic responsive envelope with complex geometry that integrates shading devices in the façade. The case study is based on the Esplanade buildings in Singapore. Climate-based day-light metrics such as Daylight Availability and Useful Daylight Illuminance are used. DIVA (daylight simulation), and Grasshopper (parametric analysis) plug-ins for Rhinoceros have been employed to examine the range of performance possibilities. Parameters such as dimension, inclination of the device, projected shadows and shape have been changed in order to maximize daylight availability and Useful Daylight Illuminance while minimizing glare probability. While orientation did not have a great impact on the results, aperture of the shading devices did, showing that shading devices with a projection of 1.75 m to 2.00 m performed best, achieving target lighting levels without issues of glare.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
A 3-year longitudinal study Transforming Children’s Mathematical and Scientific Development integrates, through data modelling, a pedagogical approach focused on mathematical patterns and structural relationships with learning in science. As part of this study, a purposive sample of 21 highly able Grade 1 students was engaged in an innovative data modelling program. In the majority of students, representational development was observed. Their complex graphs depicting categorical and continuous data revealed a high level of structure and enabled identification of structural features critical to this development.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual. With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to signifi cant changes in the forms of mathematical and scientifi c thinking required beyond the classroom. Modelling, in its various forms, can develop and broaden students’ mathematical and scientific thinking beyond the standard curriculum. This chapter first considers future competencies in the mathematical sciences within an increasingly complex world. Consideration is then given to interdisciplinary problem solving and models and modelling, as one means of addressing these competencies. Illustrative case studies involving complex, interdisciplinary modelling activities in Years 1 and 7 are presented.
Resumo:
The properties of ellipsoidal nanowires are yet to be examined. They have likely applications in sensing, solar cells, microelectronics and cloaking devices. Little is known of the qualities that ellipse nanowires exhibit as we vary the aspect ratio with different dielectric materials and how varying these attributes affects plasmon coupling and propagation. It is known that the distance a plasmon can travel is further if it is supported by a thicker circular nanowire, while thinner nanowires are expected to be able to increase QD coupling. Ellipsoidal nanowires may be a good compromise due to their ability to have both thin and thick dimensions. Furthermore it has been shown that the plasmon resonances along the main axis of an ellipsoidal particle is governed by the relative aspect ratio of the ellipsoid, which may lead to further control of the plasmon. Research was done by the use of COMSOL Multiphysics by looking at the fundamental plasmon mode supported by an ellipsoidal nanowire and then studying this mode for various geometrical parameters, materials and illumination wavelength. Accordingly it was found that ellipsoidal nanowires exhibit a minimum for the wavenumber and a maximum for the propagation distance at roughly the same dimensions - Highlighting that there is an aspect ratio for which there is poor coupling but low loss. Here we investigate these and related attributes.
Resumo:
Microwave power is used for heating and drying processes because of its faster and volumetric heating capability. Non-uniform temperature distribution during microwave application is a major drawback of these processes. Intermittent application of microwave potentially reduces the impact of non-uniformity and improves energy efficiency by redistributing the temperature. However, temperature re-distribution during intermittent microwave heating has not been investigated adequately. Consequently, in this study, a coupled electromagnetic with heat and mass transfer model was developed using the finite element method embedded in COMSOL-Multyphysics software. Particularly, the temperature redistribution due to intermittent heating was investigated. A series of experiments were performed to validate the simulation. The test specimen was an apple and the temperature distribution was closely monitored by a TIC (Thermal Imaging Camera). The simulated temperature profile matched closely with thermal images obtained from experiments.
Resumo:
Retired business professionals represent an unexplored source of skill support for struggling rural communities. This research examined the feasibility of drawing on this valuable pool of knowledge and experience by engaging retirees in short term, project based volunteering roles in rural, not for profit agencies. Using the theory of planned behaviour and the functional approach to volunteering, the program of study generated a model comprising the key psychological and contextual factors determining the volunteers' decision to provide skill assistance in rural settings. The model provides a useful resource for creating suitable volunteering opportunities and for informing volunteer recruitment strategies.
Resumo:
Process modelling – the design and use of graphical documentations of an organisation’s business processes – is a key method to document and use information about business processes. Still, despite current interest in process modelling, this research area faces essential challenges. Key unanswered questions concern the impact of process modelling in organisational practice, and the mechanisms through which impacts are developed. To answer these questions and to provide a better understanding of process modelling impact, I turn to the concept of affordances. Affordances describe the possibilities for goal-oriented action that technical objects offer to specified users. This notion has received growing attention from IS researchers. I report on my efforts to further develop the IS discipline’s understanding of affordances and impacts from informational objects, such as process models used by analysts for purposes of information systems analysis and design. Specifically, I seek to extend existing theory on the emergence and actualisation of affordances. I develop a research model that describes the process by which affordances are perceived and actualised and explain their dependence on available information and actualisation effort. I present my plans for operationalising and testing this research model empirically, and provide details about my design of a full-cycle, mixed methods study currently in progress.
Resumo:
Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.
Resumo:
Digital human modeling (DHM) systems underwent significant development within the last years. They achieved constantly growing importance in the field of ergonomic workplace design, product development, product usability, ergonomic research, ergonomic education, audiovisual marketing and the entertainment industry. They help to design ergonomic products as well as healthy and safe socio-technical work systems. In the domain of scientific DHM systems, no industry specific standard interfaces are defined which could facilitate the exchange of 3D solid body data, anthropometric data or motion data. The focus of this article is to provide an overview of requirements for a reliable data exchange between different DHM systems in order to identify suitable file formats. Examples from the literature are discussed in detail. Methods: As a first step a literature review is conducted on existing studies and file formats for exchanging data between different DHM systems. The found file formats can be structured into different categories: static 3D solid body data exchange, anthropometric data exchange, motion data exchange and comprehensive data exchange. Each file format is discussed and advantages as well as disadvantages for the DHM context are pointed out. Case studies are furthermore presented, which show first approaches to exchange data between DHM systems. Lessons learnt are shortly summarized. Results: A selection of suitable file formats for data exchange between DHM systems is determined from the literature review.
Resumo:
With the widespread of social media websites in the internet, and the huge number of users participating and generating infinite number of contents in these websites, the need for personalisation increases dramatically to become a necessity. One of the major issues in personalisation is building users’ profiles, which depend on many elements; such as the used data, the application domain they aim to serve, the representation method and the construction methodology. Recently, this area of research has been a focus for many researchers, and hence, the proposed methods are increasing very quickly. This survey aims to discuss the available user modelling techniques for social media websites, and to highlight the weakness and strength of these methods and to provide a vision for future work in user modelling in social media websites.
Resumo:
This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution