408 resultados para DOUBLE BARRIER STRUCTURES
Resumo:
The carrier blocking property of polyterpenol thin films derived from non-synthetic precursor is studied using Electric Field Induced Optical Second Harmonic Generation (EFISHG) technique that can directly probe carrier motion in organic materials. A properly biased double-layer MIM device with a structure of indium zinc oxide (IZO)/polyterpenol/C₆₀/Al shows that by incorporating the polyterpenol thin film, the electron transport can be blocked while the hole transport is allowed. The inherent electron blocking hole transport property is verified using Al/C₆₀/Alq3/polyterpenol/IZO and Al/Alq3/polyterpenol/IZO structures. The rectifying property of polyterpenol is very promising and can be utilized in the fabrication of many organic devices.
Resumo:
The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.
Resumo:
Time-resolved electric field induced second harmonic generation technique was used to probe the carrier transients within double-layer pentacene-based MIM devices. Polyterpenol thin films fabricated from non-synthetic environmentally sustainable source were used as a blocking layer to assist in visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Results demonstrated that carrier transients were comprised of charging on electrodes, followed by carrier injection and charging of the interface. Polyterpenol was demonstrated to be a sound blocking material and can therefore be effectively used for probing of double-layer devices using EFISHG.
Resumo:
Adsorption has been considered as an efficient method for the treatment of dye effluents, but properdisposal of the spent adsorbents is still a challenge. This work attempts to provide a facile methodto reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II(OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washedwith acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that thecarbonization could be well achieved above 600◦C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000 ◦C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption–desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m2/g and 1.67 cm3/g for the sample carbonized at 800 ◦C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organisations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organizations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
There is an uptake of organizations involvement in collaborative organizational structures (COS). As the nature and level of information technology (IT) investment in COS will be similar, the COS IT competencies will leverage the IT investments to create the collaborative rent generating potential of the COS, which would then improve the business value of the COS members. Consistent with the resource-centric views of the firm, we suggest that the COS members need to contribute their managed IT competencies to their COS, whose synergies would create COS IT competencies. We suggest three key IT competencies for COS; proactive top management decision synergy, collaborative and agile IT infrastructure, and cross-functional tactical management synergy. Using survey data, we find evidence of a positive association between these COS IT competencies and the collaborative rent generating potential of the COS. We also find a positive association between the collaborative rent generating potential of the COS and the business value of the COS members. The results suggest that developing COS IT competencies add value to a COS and its members. This study provides guidance for organizations looking to leverage their involvement in a COS.
Resumo:
This research provides information for providing the required seismic mitigation in building structures through the use of semi active and passive dampers. The Magneto-Rheological (MR) semi-active damper model was developed using control algorithms and integrated into seismically excited structures as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Research information can be used for the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.
Resumo:
Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
This paper presents an experimental investigation on the lateral impact performance of axially loaded concrete-filled double-skin tube (CFDST) columns. These columns have desirable structural and constructional properties and have been used as columns in building, legs of off shore platforms and as bridge piers. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, an experimental method employing an innovative instrumented horizontal impact testing system (HITS) was developed to apply lateral impact loads whilst the column maintained a static axial pre-loading to examine the failure mechanism and key response parameters of the column. These included the time histories of impact force, reaction forces, global lateral deflection and permanent local buckling profile. Eight full scale columns were tested for key parameters including the axial load level and impact location. Based on the test data, the failure mode, peak impact force, impact duration, peak reaction forces, reaction force duration, column maximum and residual global deflections and column local buckling length, depth and width under varying conditions are analysed and discussed. It is evident that the innovative HITS can successfully test structural columns under the combination of axial pre-loading and impact loading. The findings on the lateral impact response of the CFDST columns can serve as a benchmark reference for their future analysis and design.
Resumo:
This research treats the lateral impact behaviour of composite columns, which find increasing use as bridge piers and building columns. It offers (1) innovative experimental methods for testing structural columns, (2) dynamic computer simulation techniques as a viable tool in analysis and design of such columns and (3) significant new information on their performance which can be used in design. The research outcomes will enable to protect lives and properties against the risk of vehicular impacts caused either accidentally or intentionally.
Resumo:
Introduction Patients post sepsis syndromes have a poor quality of life and a high rate of recurring illness or mortality. Follow-up clinics have been instituted for patients postgeneral intensive care but evidence is sparse, and there has been no clinic specifically for survivors of sepsis. The aim of this trial is to investigate if targeted screening and appropriate intervention to these patients can result in an improved quality of life (Short Form 36 health survey (SF36V.2)), decreased mortality in the first 12 months, decreased readmission to hospital and/or decreased use of health resources. Methods and analysis 204 patients postsepsis syndromes will be randomised to one of the two groups. The intervention group will attend an outpatient clinic two monthly for 6 months and receive screening and targeted intervention. The usual care group will remain under the care of their physician. To analyse the results, a baseline comparison will be carried out between each group. Generalised estimating equations will compare the SF36 domain scores between groups and across time points. Mortality will be compared between groups using a Cox proportional hazards (time until death) analysis. Time to first readmission will be compared between groups by a survival analysis. Healthcare costs will be compared between groups using a generalised linear model. Economic (health resource) evaluation will be a within-trial incremental cost utility analysis with a societal perspective. Ethics and dissemination Ethical approval has been granted by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee (HREC; HREC/13/QRBW/17), The University of Queensland HREC (2013000543), Griffith University (RHS/08/14/HREC) and the Australian Government Department of Health (26/2013). The results of this study will be submitted to peer-reviewed intensive care journals and presented at national and international intensive care and/or rehabilitation conferences.