403 resultados para Biological test
Resumo:
We describe a novel approach to treatment planning for focal brachytherapy utilizing a biologically based inverse optimization algorithm and biological imaging to target an ablative dose at known regions of significant tumour burden and a lower, therapeutic dose to low risk regions.
Resumo:
The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n = 1273) aged 18–98 years, and males (n = 506) aged 19–93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100 cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r = −0.71, p < 0.001) and women (r = −0.60, p < 0.001); demonstrating a key requirement that must be met by a biomarker of aging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary.
Resumo:
Expressed sequence tag (EST) databases provide a primary source of nuclear DNA sequences for genetic marker development in non-model organisms. To date, the process has been relatively inefficient for several reasons: - 1) priming site polymorphism in the template leads to inferior or erratic amplification; - 2) introns in the target amplicon are too large and/or numerous to allow effective amplification under standard screening conditions, and; - 3) at least occasionally, a PCR primer straddles an exon–intron junction and is unable to bind to genomic DNA template. The first is only a minor issue for species or strains with low heterozygosity but becomes a significant problem for species with high genomic variation, such as marine organisms with extremely large effective population sizes. Problems arising from unanticipated introns are unavoidable but are most pronounced in intron-rich species, such as vertebrates and lophotrochozoans. We present an approach to marker development in the Pacific oyster Crassostrea gigas, a highly polymorphic and intron-rich species, which minimizes these problems, and should be applicable to other non-model species for which EST databases are available. Placement of PCR primers in the 3′ end of coding sequence and 3′ UTR improved PCR success rate from 51% to 97%. Almost all (37 of 39) markers developed for the Pacific oyster were polymorphic in a small test panel of wild and domesticated oysters.
Resumo:
Objective To develop the DCDDaily, an instrument for objective and standardized clinical assessment of capacity in activities of daily living (ADL) in children with developmental coordination disorder (DCD), and to investigate its usability, reliability, and validity. Subjects Five to eight-year-old children with and without DCD. Main measures The DCDDaily was developed based on thorough review of the literature and extensive expert involvement. To investigate the usability (assessment time and feasibility), reliability (internal consistency and repeatability), and validity (concurrent and discriminant validity) of the DCDDaily, children were assessed with the DCDDaily and the Movement Assessment Battery for Children-2 Test, and their parents filled in the Movement Assessment Battery for Children-2 Checklist and Developmental Coordination Disorder Questionnaire. Results 459 children were assessed (DCD group, n = 55; normative reference group, n = 404). Assessment was possible within 30 minutes and in any clinical setting. For internal consistency, Cronbach’s α = 0.83. Intraclass correlation = 0.87 for test–retest reliability and 0.89 for inter-rater reliability. Concurrent correlations with Movement Assessment Battery for Children-2 Test and questionnaires were ρ = −0.494, 0.239, and −0.284, p < 0.001. Discriminant validity measures showed significantly worse performance in the DCD group than in the control group (mean (SD) score 33 (5.6) versus 26 (4.3), p < 0.001). The area under curve characteristic = 0.872, sensitivity and specificity were 80%. Conclusions The DCDDaily is a valid and reliable instrument for clinical assessment of capacity in ADL, that is feasible for use in clinical practice.
Resumo:
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
Resumo:
Overview This report, published in conjunction with a summary overview of results of rounds 1–6, is the sixth in a series of laboratory-based evaluations of rapid diagnostic tests (RDTs) for malaria. It provides a comparative measure of their performance in a standardized way to distinguish between well and poorly performing tests. It can be used by malaria control programmes and guide WHO procurement recommendations for these diagnostic tools. The evaluation reported here was a joint project of the WHO Global Malaria Programme, the Foundation for Innovative New Diagnostics (FIND) and the United States Centers for Disease Control and Prevention (CDC) within the WHO-FIND Malaria RDT Evaluation Programme. The project was financed by FIND through a grant from UNITAID.
Resumo:
Nature is a school for scientists and engineers. Inherent multiscale structures of biological materials exhibit multifunctional integration. In nature, the lotus, the water strider, and the flying bird evolved different and optimized biological solutions to survive. In this contribution, inspired by the optimized solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, and superior repellency towards different corrosive solutions. This approach provides an effective avenue to the development of water strider robots and other aquatic smart devices floating on water. Furthermore, the resultant multifunctional metallic foam can be used to construct an oil/water separation apparatus, exhibiting a high separation efficiency and long-term repeatability. The presented approach should provide a promising solution for the design and construction of other multifunctional metallic foams in a large scale for practical applications in the petro-chemical field. Optimized biological solutions continue to inspire and to provide design idea for the construction of multiscale structures with multifunctional integration. Inspired by the optimized biological solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, stable corrosion resistance, and oil/water separation.
Resumo:
This chapter describes biological and environmental determinants of the health of Australians, providing a background to the development of successful public health activity. You will recall from the introduction to Section 2 that health determinants are the biomedical, genetic, behavioural, socioeconomic and environmental factors that impact on health and wellbeing. These determinants can be influenced by interventions and by resources and systems (Australian Institute of Health and Welfare (AIHW) AIHW 2012a). Many factors combine to affect the health of individuals and communities. People’s circumstances and the environment determine whether a population is healthy or not. Factors such as where people live, the state of their environment, genetics, their education level and income, and their relationships with friends and family are all likely to impact on their health. The determinants of population health reflect the context of people’s lives; however, people have limited control over many of these determinants (WHO 2007).
Resumo:
The test drive is a well-known step in car buying. In the emerging plug-in electric vehicle (PEV) market, however, the influence of a pre-purchase test drive on a consumer's inclination to purchase is unknown. Policy makers and industry participants both are eager to understand what factors motivate vehicle consumers at the point-of-sale. A number of researchers have used choice models to shed light on consumer perceptions of PEVs, and others have investigated consumer change in disposition toward a PEV over the course of a trial, wherein test driving a PEV may take place over a number of consecutive days, weeks or months. However, there is little written on the impact of a short-term test drive - a typical experience at dealerships or public "ride-and-drive" events. The impact of a typical test drive, often measured in minutes of driving, is not well understood. This paper first presents a synthesis of the literature on the effect of PEV test drives as they relate to consumer disposition toward PEVs. An analysis of data obtained from an Australian case study whereby attitudinal and stated preference data were collected pre- and post- test drive at public "ride-and-drive" event held Brisbane, Queensland in March 2014 using a custom-designed iPad application. Motorists' perceptions and choice preferences around PEVs were captured, revealing the relative importance of their experience behind the wheel. Using the Australian context as a case-study, this paper presents an exploratory study of consumers' stated preferences toward PEVs both before and after a short test drive.
Resumo:
Over the last few decades, geotextiles have progressively been incorporated into geotechnical applications, especially in the field of coastal engineering. Geotextile materials often act as separator and a filter layer between rocks laid above and subgrade beneath. This versatile material has gradually substituted traditional granular materials because of its ease of installation, consistent quality and labour costefficiency. However, geotextiles often suffer damage during installation due to high dynamic bulk loading of rock placement. This can degrade geotextiles' mechanical strength. The properties considered in this paper include the impact resistance and retained strength of geotextiles. In general, the greater the impact energy applied to geotextiles, the greater the potential for damage. Results highlight the inadequacy of using index derived values as an indicator to determine geotextile performance on site because test results shows that geotextiles (staple fibre (SF) and continuous filament (CF)) with better mechanical properties did not outperform lower mechanical strength materials. The toughest CF product with a CBR index value of 9696N shows inferior impact resistance compared to SF product with the least CBR strength (2719N) given the same impact energy of 9.02 kJ. Test results also indicated that the reduction of strength for CF materials were much greater (between 20 and 50%) compared to SF materials (between 0 and 5%) when subjected to the same impact energy of 4.52 kJ.
Resumo:
In modern evolutionary divergence analysis the role of geological information extends beyond providing a timescale, to informing molecular rate variation across the tree. Here I consider the implications of this development. I use fossil calibrations to test the accuracy of models of molecular rate evolution for placental mammals, and reveal substantial misspecification associated with life history rate correlates. Adding further calibrations to reduce dating errors at specific nodes unfortunately tends to transfer underlying rate errors to adjacent branches. Thus, tight calibration across the tree is vital to buffer against rate model errors. I argue that this must include allowing maximum bounds to be tight when good fossil records permit, otherwise divergences deep in the tree will tend to be inflated by the interaction of rate errors and asymmetric confidence in minimum and maximum bounds. In the case of placental mammals I sought to reduce the potential for transferring calibration and rate model errors across the tree by focusing on well-supported calibrations with appropriately conservative maximum bounds. The resulting divergence estimates are younger than others published recently, and provide the long-anticipated molecular signature for the placental mammal radiation observed in the fossil record near the 66 Ma Cretaceous–Paleogene extinction event.
Resumo:
Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc) are both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. Here we present the first two mt genomes for the families Fanniidae (Euryomma sp.) (family Fanniidae) and Anthomyiidae (Delia platura (Meigen, 1826)). We also conducted phylogenetic analyses containing of these newly sequenced mt genomes plus 15 other species representative of dipteran diversity to address the internal relationship of Muscoidea and its systematic position. Both maximum-likelihood and Bayesian analyses suggested that Muscoidea was not a monophyletic group with the relationship: (Fanniidae + Muscidae) + ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)), supported by the majority of analysed datasets. This also infers that Oestroidea was paraphyletic in the majority of analyses. Divergence time estimation suggested that the earliest split within the Calyptratae, separating (Tachinidae + Oestridae) from the remaining families, occurred in the Early Eocene. The main divergence within the paraphyletic muscoidea grade was between Fanniidae + Muscidae and the lineage ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)) which occurred in the Late Eocene
Resumo:
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.