411 resultados para protein chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmid DNA for therapeutic and vaccination purposes must be highly purified. The high selectivity of affinity chromatography makes it ideal for the isolation of pDNA from complex biological feed stocks. Affinity chromatography makes use of the biological function and/or individual chemical structure of the interacting molecules. However, the success of any affinity purification protocol is dependent on the availability of suitable ligands. In this study, surface plasmon resonance (SPR) based Biacore system has been employed for the detection and quantification of the binding between lac operon (lacO) sequence contained in a pDNA and synthetic peptides based on the DNA-binding domain of the lac repressor protein, lad. The equilibrium dissociation constant (K D) and association and dissociation rate constants (ka, kd) for the interaction between plasmid DNA and designed peptides were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with unpractically low DNA yields. We have optimized tbe procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 μg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current approaches for purifying plasmids from bacterial production systems exploit the physiochemical properties of nucleic acids in non-specific capture systems. In this study, an affinity system for plasmid DNA (pDNA) purification has been developed utilizing the interaction between the lac operon (lacO) sequence contained in the pDNA and a 64mer synthetic peptide representing the DNA-binding domain of the lac repressor protein, LacI. Two plasmids were evaluated, the native pUC19 and pUC19 with dual lacO3/lacOs operators (pUC19lacO3/lacOs), where the lacOs operator is perfectly symmetrical. The DNA-protein affinity interaction was evaluated by surface plasmon resonance using a Biacore system. The affinity capture of DNA in a chromatography system was evaluated using LacI peptide that had been immobilized to Streamline™ adsorbent. The KD-values for double stranded DNA (dsDNA) fragments containing lacO1 and lacO3 and lacOs and lacO3 were 5.7 ± 0.3 × 10 -11 M and 4.1 ± 0.2 × 10-11 M respectively, which compare favorably with literature reports of 5 × 10-10 - 1 × 10-9 M for native laCO1 and 1-1.2 × 10-10 M for lacO1 in a saline buffer. Densitometric analysis of the gel bands from the affinity chromatography run clearly showed a significant preference for capture of the supercoiled fraction from the feed pDNA sample. The results indicate the feasibility of the affinity approach for pDNA capture and purification using native protein-DNA interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a protein-mediated dual functional affinity adsorption of plasmid DNA is described in this work. The affinity ligand for the plasmid DNA comprises a fusion protein with glutathione-S-transferase (GST) as the fusion partner with a zinc finger protein. The protein ligand is first bound to the adsorbent by affinity interaction between the GST moeity and gluthathione that is covalently immobilized to the base matrix. The plasmid binding is then enabled via the zinc finger protein and a specific nucleotide sequence inserted into the DNA. At lower loadings, the binding of the DNA onto the Fractogel, Sepharose, and Streamline matrices was 0.0078 ± 0.0013, 0.0095 ± 0.0016, and 0.0080 ± 0.0006 mg, respectively, to 50 μL of adsorbent. At a higher DNA challenge, the corresponding amounts were 0.0179 ± 0.0043, 0.0219 ± 0.0035, and 0.0190 ± 0.0041 mg, respectively. The relatively constant amounts bound to the three adsorbents indicated that the large DNA molecule was unable to utilize the available zinc finger sites that were located in the internal pores and binding was largely a surface adsorption phenomenon. Utilization of the zinc finger binding sites was shown to be highest for the Fractogel adsorbent. The adsorbed material was eluted with reduced glutathione, and the eluted efficiency for the DNA was between 23% and 27%. The protein elution profile appeared to match the adsorption profiles with significantly higher recoveries of bound GST-zinc finger protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of large?volume methacrylate monolithic columns for preparative-scale plasmid purification is obstructed by the enormous release of exotherms, thus introducing structural heterogeneity in the monolith pore system. A remarkable radial temperature gradient develops along the monolith thickness, reaching a terminal temperature that supersedes the maximum temperature required for the preparation of a structurally homogeneous monolith. A novel heat expulsion technique is employed to overcome the heat build-up during the synthesis process. The enormous heat build-up is perceived to encompass the heat associated with initiator decomposition and the heat released from free radical-monomer and monomer-monomer interactions. The heat resulting from the initiator decomposition was expelled along with some gaseous fumes before commencing polymerisation in a gradual addition fashion. Characteristics of a 50 mL monolith synthesized using this technique showed an improved uniformity in the pore structure radially along the length on the monolith. Chromatographic characterization of this adsorbent displayed a persistent binding capacity of 14.5 mg pDNA/mL of the adsorbent. The adsorbent was able to fractionate a clarified bacteria lysate in only 3 min (after loading) into RNA, protein and pDNA respectively. The pDNA fraction obtained was analyzed to be a homogeneous supercoiled pDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemistry of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition and PNSD, respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two sites. The NPF events happened on relatively warmer days with lower humidity and higher solar radiation. Temporal percent fractions of nitrate, sulphate, ammonium and organics were modelled using the Generalised Additive Model (GAM), with a basis of penalised spline. Percent fractions of organics increased after the NPF events, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. f44 vs f43 followed a different pattern on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be used as a tool for source apportionment of measured particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubules (MTs) play important and diverse roles in eukaryotic cells. Their function and biophysical properties have made α−and β−tubulin, the main components of MTs, the subject of intense study. Interfering with normal MT dynamics, for example, by the addition of tubulin ligands, can cause the cell great distress and affect MT stability and functions, including mitosis, cell motion and intracellular organelle transport. It has been shown in the literature that tubulin is an important target molecule for developing anticancer drugs. Tubulin binding molecules have generated considerable interest after the successful introduction of the taxanes into clinical oncology and the widespread use of the vinca alkaloids vincristine and vinblastine. These compounds inhibit cell mitosis by binding to the protein tubulin in the mitotic spindle and preventing polymerization into the MTs. This mode of action is also shared with other natural agents eg colchicine and podophyllotoxin. However various tubulin isotypes have shown resistance to taxanes and other MT agents. Therefore, there is a strong need to design and develop new natural analogs as antimitotic agents to interact with tubulin at sites different from those of vinca alkaloids and taxanes. This minireview provides SAR on several classes of antimitotic agents reported in the literature. The structures and data given are essential to the scientists who are involved in drug design and development in the field of anticancer drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canonical single-stranded DNA-binding proteins (SSBs) from the oligosaccharide/oligonucleotide-binding (OB) domain family are present in all known organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has a ‘simple’ domain organization consisting of a single DNA-binding OB fold coupled to a flexible C-terminal tail, in contrast with other SSBs in this family that incorporate up to four OB domains. Despite the large differences in the domain organization within the SSB family, the structure of the OB domain is remarkably similar all cellular life forms. However, there are significant differences in the molecular mechanism of ssDNA binding. We have determined the structure of the SsoSSB OB domain bound to ssDNA by NMR spectroscopy. We reveal that ssDNA recognition is modulated by base-stacking of three key aromatic residues, in contrast with the OB domains of human RPA and the recently discovered human homologue of SsoSSB, hSSB1. We also demonstrate that SsoSSB binds ssDNA with a footprint of five bases and with a defined binding polarity. These data elucidate the structural basis of DNA binding and shed light on the molecular mechanism by which these ‘simple’ SSBs interact with ssDNA.