483 resultados para operating systems
Resumo:
Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR). It is assumed that the source voltages contain interharmonic components in addition to fundamental components. The main aim of the DVR is to produce a set of clean balanced sinusoidal voltages across the load terminals irrespective of unbalance, distortion and voltage sag/swell in the supply voltage. An algorithm has been discussed for extracting fundamental phasor sequence components from the samples of three-phase voltages or current waveforms having integer harmonics and interharmonics. The DVR operation based on extracted components is demonstrated. The switching signal is generated using a deadbeat controller. It has been shown that the DVR is able to compensate these interharmonic components such that the load voltages are perfectly regulated. The DVR operation under deep voltage sag is also discussed. The proposed DVR operation is verified through the computer simulation studies using the MATLAB software package.
Resumo:
Various load compensation schemes proposed in literature assume that voltage source at point of common coupling (PCC) is stiff. In practice, however, the load is remote from a distribution substation and is supplied by a feeder. In the presence of feeder impedance, the PWM inverter switchings distort both the PCC voltage and the source currents. In this paper load compensation with such a non-stiff source is considered. A switching control of the voltage source inverter (VSI) based on state feedback is used for load compensation with non-stiff source. The design of the state feedback controller requires careful considerations in choosing a gain matrix and in the generation of reference quantities. These aspects are considered in this paper. Detailed simulation and experimental results are given to support the control design.