381 resultados para level-sets
Resumo:
Objectives To examine the effects of overall level and timing of physical activity (PA) on changes from a healthy body mass index (BMI) category over 12 years in young adult women. Patients and Methods Participants in the Australian Longitudinal Study on Women's Health (younger cohort, born 1973-1978) completed surveys between 2000 (age 22-27 years) and 2012 (age 34-39 years). Physical activity was measured in 2000, 2003, 2006, and 2009 and was categorized as very low, low, active, or very active at each survey, and a cumulative PA score for this 9-year period was created. Logistic regression was used to examine relationships between PA accumulated across all surveys (cumulative PA model) and PA at each survey (critical periods PA model), with change in BMI category (from healthy to overweight or healthy to obese) from 2000 to 2012. Results In women with a healthy BMI in 2000, there were clear dose-response relationships between accumulated PA and transition to overweight (P=.03) and obesity (P<.01) between 2000 and 2012. The critical periods analysis indicated that very active levels of PA at the 2006 survey (when the women were 28-33 years old) and active or very active PA at the 2009 survey (age 31-36 years) were most protective against transitioning to overweight and obesity. Conclusion These findings confirm that maintenance of very high PA levels throughout young adulthood will significantly reduce the risk of becoming overweight or obese. There seems to be a critical period for maintaining high levels of activity at the life stage when many women face competing demands of caring for infants and young children.
Resumo:
The third edition of the Australian Standard AS1742 Manual of Uniform Traffic Control Devices Part 7 provides a method of calculating the sighting distance required to safely proceed at passive level crossings based on the physics of moving vehicles. This required distance becomes greater with higher line speeds and slower, heavier vehicles so that it may return quite a long sighting distance. However, at such distances, there are also concerns around whether drivers would be able to reliably identify a train in order to make an informed decision regarding whether it would be safe to proceed across the level crossing. In order to determine whether drivers are able to make reliable judgements to proceed in these circumstances, this study assessed the distance at which a train first becomes identifiable to a driver as well as their, ability to detect the movement of the train. A site was selected in Victoria, and 36 participants with good visual acuity observed 4 trains in the 100-140 km/h range. While most participants could detect the train from a very long distance (2.2 km on average), they could only detect that the train was moving at much shorter distances (1.3 km on average). Large variability was observed between participants, with 4 participants consistently detecting trains later than other participants. Participants tended to improve in their capacity to detect the presence of the train with practice, but a similar trend was not observed for detection of the movement of the train. Participants were consistently poor at accurately judging the approach speed of trains, with large underestimations at all investigated distances.
Resumo:
There are 23,500 level crossings in Australia. In these types of environments it is important to understand what human factor issues are present and how road users and pedestrians engage with crossings. A series of on-site observations were performed over a 2-day period at a 3-track active crossing. This was followed by 52 interviews with local business owners and members of the public. Data were captured using a manual-coding scheme for recording and categorising violations. Over 700 separate road user and pedestrian violations were recorded, with representations in multiple categories. Time stamping revealed that the crossing was active for 59% of the time in some morning periods. Further, trains could take up to 4-min to arrive following its first activation. Many pedestrians jaywalked under side rails and around active boom gates. In numerous cases pedestrians put themselves at risk in order to beat or catch the approaching train, ignored signs to stop walking when the lights were flashing. Analysis of interview data identified themes associated with congestion, safety, and violations. This work offers insight into context specific issues associated with active level crossing protection.
Resumo:
We have come a long way from simple straw and balloon models of magma plumbing systems to a more detailed picture of shallow level intrusive complexes. In this chapter, the sub-volcanic plumbing system is considered in terms of how we can define the types and styles of magma networks from the deep to the shallow subsurface. We look at the plumbing system from large igneous provinces, through rifted systems to polygenetic volcanoes, with a view to characterising some of the key conceptual models. There is a focus on how ancient magmatic centres can help us better understand magmatic plumbing. New innovative ways to consider and quantify magma plumbing are also highlighted including 3D seismic, and using the crystal cargo to help fingerprint key magma plumbing events. Conclusions are drawn to our understanding of the 3D plumbing system and how these recent advances can be helpful when exploring the other chapters of this contribution.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.