639 resultados para control volume
Resumo:
Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver's hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony - namely road design and road side variability - decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver's decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver's sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.
Resumo:
Purpose: To examine the impact of different endotracheal tube (ETT) suction techniques on regional end-expiratory lung volume (EELV) and tidal volume (VT) in an animal model of surfactant-deficient lung injury. Methods: Six 2-week old piglets were intubated (4.0 mm ETT), muscle-relaxed and ventilated, and lung injury was induced with repeated saline lavage. In each animal, open suction (OS) and two methods of closed suction (CS) were performed in random order using both 5 and 8 French gauge (FG) catheters. The pre-suction volume state of the lung was standardised on the inflation limb of the pressure-volume relationship. Regional EELV and VT expressed as a proportion of the impedance change at vital capacity (%ZVCroi) within the anterior and posterior halves of the chest were measured during and for 60 s after suction using electrical impedance tomography. Results: During suction, 5 FG CS resulted in preservation of EELV in the anterior (nondependent) and posterior(dependent) lung compared to the other permutations, but these only reached significance in the anterior regions (p\0.001 repeated-measures ANOVA). VT within the anterior, but not posterior lung was significantly greater during 5FG CS compared to 8 FG CS; the mean difference was 15.1 [95% CI 5.1, 25.1]%ZVCroi. Neither catheter size nor suction technique influenced post-suction regional EELV or VT compared to pre-suction values (repeated-measures ANOVA). Conclusions: ETT suction causes transient loss of EELV and VT throughout the lung. Catheter size exerts a greater influence than suction method, with CS only protecting against derecruitment when a small catheter is used, especially in the non-dependent lung.
Resumo:
It is known that the depth of focus (DOF) of the human eye can be affected by the higher order aberrations. We estimated the optimal combinations of primary and secondary Zernike spherical aberration to expand the DOF and evaluated their efficiency in real eyes using an adaptive optics system. The ratio between increased DOF and loss of visual acuity was used as the performance indicator. The results indicate that primary or secondary spherical aberration alone shows similar effectiveness in extending the DOF. However, combinations of primary and secondary spherical aberration with different signs provide better efficiency for expanding the DOF. This finding suggests that the optimal combinations of primary and secondary spherical aberration may be useful in the design of optical presbyopic corrections. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.
Resumo:
This paper discusses the control and protection of a microgrid that is connected to utility through back-to-back converters. The back-to-back converter connection facilitates bidirectional power flow between the utility and the microgrid. These converters can operate in two different modes–one in which a fixed amount of power is drawn from the utility and the other in which the microgrid power shortfall is supplied by the utility. In the case of a fault in the utility or microgrid side, the protection system should act not only to clear the fault but also to block the back-to-back converters such that its dc bus voltage does not fall during fault. Furthermore, a converter internal mechanism prevents it from supplying high current during a fault and this complicates the operation of a protection system. To overcome this, an admittance based relay scheme is proposed, which has an inverse time characteristic based on measured admittance of the line. The proposed protection and control schemes are able to ensure reliable operation of the microgrid.
Resumo:
This paper presents the results of a series of tension tests on CFRP bonded steel plate double strap joints. The main aim of this research is to provide detailed understanding of bond characteristics using experimental and numerical analysis of strengthened double strap joints under tension. A parametric study has been performed by numerical modelling with the variables of CFRP bond lengths, adhesive maximum strain and adhesive layer thicknesses. Finally, bond-slip models are proposed for three different types of adhesives within the range of the parametric study.
Resumo:
Background By 2025, it is estimated that approximately 1.8 million Australian adults (approximately 8.4% of the adult population) will have diabetes, with the majority having type 2 diabetes. Weight management via improved physical activity and diet is the cornerstone of type 2 diabetes management. However, the majority of weight loss trials in diabetes have evaluated short-term, intensive clinic-based interventions that, while producing short-term outcomes, have failed to address issues of maintenance and broad population reach. Telephone-delivered interventions have the potential to address these gaps. Methods/Design Using a two-arm randomised controlled design, this study will evaluate an 18-month, telephone-delivered, behavioural weight loss intervention focussing on physical activity, diet and behavioural therapy, versus usual care, with follow-up at 24 months. Three-hundred adult participants, aged 20-75 years, with type 2 diabetes, will be recruited from 10 general practices via electronic medical records search. The Social-Cognitive Theory driven intervention involves a six-month intensive phase (4 weekly calls and 11 fortnightly calls) and a 12-month maintenance phase (one call per month). Primary outcomes, assessed at 6, 18 and 24 months, are: weight loss, physical activity, and glycaemic control (HbA1c), with weight loss and physical activity also measured at 12 months. Incremental cost-effectiveness will also be examined. Study recruitment began in February 2009, with final data collection expected by February 2013. Discussion This is the first study to evaluate the telephone as the primary method of delivering a behavioural weight loss intervention in type 2 diabetes. The evaluation of maintenance outcomes (6 months following the end of intervention), the use of accelerometers to objectively measure physical activity, and the inclusion of a cost-effectiveness analysis will advance the science of broad reach approaches to weight control and health behaviour change, and will build the evidence base needed to advocate for the translation of this work into population health practice.
Resumo:
The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.