562 resultados para brain, computer, interface
Resumo:
Smart Material Interface (SMI) is the latest generation of user interface that makes use of engineered materials and leverages their special properties. SMIs are capable of changing their physical properties such as shape, size and color, and can be controlled under certain (external) conditions. We provide an example of such an SMI in the form of a prototype of a vacuum cleaner. The prototype uses schematic electrochromic polymer at the suction nozzle of the vacuum cleaner, which changes its color depending on the dust level on a floor. We emphasize on the new affordances and communication language supported by SMIs, which challenges the current metaphors of user interfaces in the field of HCI.
Resumo:
Falling prices have led to an ongoing spread of public displays in urban areas. Still, they mostly show passive content such as commercials and digital signage. At the same time, technological advances have enabled the creation of interactive displays potentially increasing their attractiveness for the audience, e.g. through providing a platform for civic discourse. This poses considerable challenges, since displays need to communicate the opportunity to engage, motivate the audience to do so, and be easy to use. In this paper we present Vote With Your Feet, a hyperlocal public polling tool for urban screens allowing users to express their opinions. Similar to vox populi interviews on TV or polls on news websites, the tool is meant to reflect the mindset of the community on topics such as current affairs, cultural identity and local matters. It is novel in that it focuses on a situated civic discourse and provides a tangible user interface, tackling the mentioned challenges. It shows one Yes/No question at a time and enables users to vote by stepping on one of two tangible buttons on the ground. This user interface was introduced to attract people’s attention and to lower participation barriers. Our field study showed that Vote With Your Feet is perceived as inviting and that it can spark discussions among co-located people.
Resumo:
Scaffolds are porous biocompatible materials with suitable microarchitectures that are designed to allow for cell adhesion, growth and proliferation. They are used in combination with cells in regenerative medicine to promote tissue regeneration by means of a controlled deposition of natural extracellular matrix by the hosted cells therein. This healing process is in many cases accompanied by scaffold degradation up to its total disappearance when the scaffold is made of a biodegradable material. This work presents a computational model that simulates the degradation of scaffolds. The model works with three-dimensional microstructures, which have been previously discretised into small cubic homogeneous elements, called voxels. The model simulates the evolution of the degradation of the scaffold using a Monte Carlo algorithm, which takes into account the curvature of the surface of the fibres. The simulation results obtained in this study are in good agreement with empirical degradation measurements performed by mass loss on scaffolds after exposure to an etching alkaline solution.
Resumo:
In this paper we describe the use and evaluation of CubIT, a multi-user, very large-scale presentation and collaboration framework. CubIT is installed at the Queensland University of Technology’s (QUT) Cube facility. The “Cube” is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, use and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT are implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. The evaluation reveals issues around the public use and functional scope of the system.
Resumo:
An in vivo screen has been devised for NF-κB p50 activity in Escherichia coli exploiting the ability of the mammalian transcription factor to emulate a prokaryotic repressor. Active intracellular p50 was shown to repress the expression of a green fluorescent protein reporter gene allowing for visual screening of colonies expressing active p50 on agar plates. A library of mutants was constructed in which the residues Y267, L269, A308 and V310 of the dimer interface were simultaneously randomised and twenty-five novel functional interfaces were selected which repressed the reporter gene to similar levels as the wild-type protein. The leucine-269 alanine-308 core was repeatedly, but not exclusively, selected from the library whilst a diversity of predominantly non-polar residues were selected at positions 267 and 310. These results indicate that L269 and A308 may form a hot spot of interaction and allow an insight into the processes of dimer selectivity and evolution within this family of transcription factors.
Resumo:
Australian law similar to that of United States -- Australian law requires copyright must subsist in plaintiff's material and defendent's work must infringe plaintiff's copyright to find defendent liable for illegal copying -- subsistence -- infringement -- two cases that touch on 'look and feel' issue -- passing-off -- look and feel of computer program deserves protection
Resumo:
United States copyright law -- two streams of computer copyright cases form basis for 'look and feel' litigation, literary work stream and audiovisual work stream -- literary work stream focuses on structure -- audiovisual work steam addresses appearance -- case studies
Resumo:
The acyl composition of membrane phospholipids in kidney and brain of mammals of different body mass was examined. It was hypothesized that reduction in unsaturation index (number of double bonds per 100 acyl chains) of membrane phospholipids with increasing body mass in mammals would be made-up of similar changes in acyl composition across all phospholipid classes and that phospholipid class distribution would be regulated and similar in the same tissues of the different-sized mammals. The results of this study supported both hypotheses. Differences in membrane phospholipid acyl composition (i. e. decreased omega-3 fats, increased monounsaturated fats and decreased unsaturation index with increasing body size) were not restricted to any specific phospholipid molecule or to any specific phospholipid class but were observed in all phospholipid classes. With increase in body mass of mammals both monounsaturates and use of less unsaturated polyunsaturates increases at the expense of the long-chain highly unsaturated omega-3 and omega-6 polyunsaturates, producing decreases in membrane unsaturation. The distribution of membrane phospholipid classes was essentially the same in the different-sized mammals with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together constituting similar to 91% and similar to 88% of all phospholipids in kidney and brain, respectively. The lack of sphingomyelin in the mouse tissues and higher levels in larger mammals suggests an increased presence of membrane lipid rafts in larger mammals. The results of this study support the proposal that the physical properties of membranes are likely to be involved in changing metabolic rate.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.