423 resultados para WATER-NITROBENZENE
Resumo:
The focus of this paper is two-dimensional computational modelling of water flow in unsaturated soils consisting of weakly conductive disconnected inclusions embedded in a highly conductive connected matrix. When the inclusions are small, a two-scale Richards’ equation-based model has been proposed in the literature taking the form of an equation with effective parameters governing the macroscopic flow coupled with a microscopic equation, defined at each point in the macroscopic domain, governing the flow in the inclusions. This paper is devoted to a number of advances in the numerical implementation of this model. Namely, by treating the micro-scale as a two-dimensional problem, our solution approach based on a control volume finite element method can be applied to irregular inclusion geometries, and, if necessary, modified to account for additional phenomena (e.g. imposing the macroscopic gradient on the micro-scale via a linear approximation of the macroscopic variable along the microscopic boundary). This is achieved with the help of an exponential integrator for advancing the solution in time. This time integration method completely avoids generation of the Jacobian matrix of the system and hence eases the computation when solving the two-scale model in a completely coupled manner. Numerical simulations are presented for a two-dimensional infiltration problem.
Resumo:
This work explored the applicability of electrocoagulation (EC) using aluminium electrodes for the removal of contaminants which can scale and foul reverse osmosis membranes from a coal seam (CS) water sample, predominantly comprising sodium chloride, and sodium bicarbonate. In general, the removal efficiency of species responsible for scaling and fouling was enhanced by increasing the applied current density/voltage and contact times (30–60 s) in the EC chamber. High removal efficiencies of species potentially responsible for scale formation in reverse osmosis units such as calcium (100%), magnesium (87.9%), strontium (99.3%), barium (100%) and silicates (98.3%) were achieved. Boron was more difficult to eliminate (13.3%) and this was postulated to be due to the elevated solution pH. Similarly, fluoride removal from solution (44%) was also inhibited by the presence of hydroxide ions in the pH range 9–10. Analysis of produced flocs suggested the dominant presence of relatively amorphous boehmite (AlOOH), albeit the formation of Al(OH)3 was not ruled out as the drying process employed may have converted aluminium hydroxide to aluminium oxyhydroxide species. Evidence for adsorption of contaminants on floc surface sites was determined from FTIR studies. The quantity of aluminium released during the electrocoagulation process was higher than the Faradaic amount which suggested that the high salt concentrations in the coal seam water had chemically reacted with the aluminium electrodes.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
Resumo:
The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A method for the determination of imidacloprid in paddy water and soil was developed using liquid chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). Separation of imidacloprid was carried out on a Shimadzu C18 column (150 mm × 4.6 mm, 4.6 μm) with an acetonitrile?water (50 : 50, v/v) mobile phase containing 0.1% of acetic acid. The flow rate was 0.3 mL/min in isocratic mode. The product ion at 209 m/z was selected for quantification in multiple-reaction monitoring scan mode. Imidacloprid residues in soil were extracted by a solid-liquid extraction method with acetonitrile. Water samples were filtered and directly injected for analysis without extraction. Detection limits of 0.5 μg/kg and 0.3 μg/L were achieved for soil and water samples, respectively. The method had recoveries of 90 ± 2% (n = 4) for soil samples and 100 ± 2% (n = 4) for water samples. A linear relationship was observed throughout the investigated range of concentrations (1-200 μg/L), with the correlation coefficients ranging from 0.999 to 1.000. © Pleiades Publishing, Ltd., 2010.
Resumo:
A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.
Resumo:
Uncertainty assessments of herbicide losses from rice paddies in Japan associated with local meteorological conditions and water management practices were performed using a pesticide fate and transport model, PCPF-1, under the Monte Carlo (MC) simulation scheme. First, MC simulations were conducted for five different cities with a prescribed water management scenario and a 10-year meteorological dataset of each city. The effectiveness of water management was observed regarding the reduction of pesticide runoff. However, a greater potential of pesticide runoff remained in Western Japan. Secondly, an extended analysis was attempted to evaluate the effects of local water management and meteorological conditions between the Chikugo River basin and the Sakura River basin using uncertainty inputs processed from observed water management data. The results showed that because of more severe rainfall events, significant pesticide runoff occurred in the Chikugo River basin even when appropriate irrigation practices were implemented. © Pesticide Science Society of Japan.
Resumo:
Experiments were carried out to verify the effectiveness of the excess water storage depth (EWSD) in reducing runoff losses of simetryn and thiobencarb from paddy fields upon appreciable rainfall events. A paddy plot having an EWSD of 2 cm was effective in controlling runoff with the herbicide losses of less than 1% of the applied herbicides. Meanwhile, a plot with 0-cm EWSD lost 18.1 and 3.7% of the applied mass of simetryn and thiobencarb, respectively. Therefore, an appropriate EWSD is essential during the recommended 7-day water holding period in order to completely hold the water inside the field in case of rainfall.
Resumo:
In order to understand the behavior of pretilachlor, a popular rice herbicide in the world, and a synergetic active ingredient, dimethametryn, a monitoring study was conducted in 3 paddy plots in Kyushu region, Japan. The monitoring indicated different behaviors for both pesticides from those reported in the literature. Maximum concentrations of pretilachlor and dimethametryn were 1 order of magnitude lower than the values observed in previous studies. However, the dissipation rates estimated from monitoring data were in agreement with other studies in Japan. The pesticide product was tested and showed good dissolution of pretilachlor and dimethametryn in water, suggesting that another study is needed to explain the low concentrations of the two pesticides in the fields. Besides pesticide behaviors, it was observed from the monitoring that water management in paddy rice cultivation still requires more attention to reduce the environmental risk of rice pesticides.
Resumo:
Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.
Resumo:
Eight small-scale lysimeters with different excess water storage depths (EWSDs) were used to investigate the behavior of two herbicides, simetryn and thiobencarb, under paddy conditions. The concentration of simetryn dissipated similarly in all the lysimeters, while the thiobencarb concentration varied significantly because thiobencarb can adsorb onto the dissolved organic matter in a manure slurry, which was applied to six of the lysimeters. The herbicide losses (the percentage of the applied mass) from the lysimeters were reversely proportional with the EWSD. The correlation was stronger for simetryn than for thiobencarb. An appropriate EWSD is required to effectively prevent herbicide run-off from the paddy field, especially when a rainfall event occurs soon after herbicide application.
Resumo:
Introduction Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Methods Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. Results At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. Conclusions DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Resumo:
Objective: Children with myelomeningocele (MMC) have an altered body composition and an atypical distribution of total body water (TBW). The aim of the present study was to determine the accuracy of current predictive equations, based on bioelectrical impedance analysis (BIA), in determining TBW when compared with measured TBW using deuterium dilution. Methods: Fourteen children with MMC were measured for whole body BIA and TBW (using deuterium dilution and the Plateau method). Total body water was predicted using equations based on the resistance and characteristic frequency from BIA measurements and heights of subjects. Results: The mean measured TBW was 15.46 ± 8.28 L and the mean predictions for TBW using equations based on the resistance and characteristic frequency from BIA measurements and heights of subjects were 18.29 ± 8.41 L, 17.72 ± 11.42 L and 12.51 ± 7.59 L, respectively. The best correlation was found using characteristic frequency. The limits of agreement between measured and predicted TBW values using Bland-Altman analysis were large. Conclusions: The present study suggests that the prediction of TBW in children with MMC can be made accurately using the equation of Cornish et al. based on BIA measurements of characteristic frequency.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.