458 resultados para TISSUE CULTURES
Resumo:
The majority of stem cell therapies for corneal repair are based upon the use of progenitor cells isolated from corneal tissue, but a growing body of literature suggests a role for mesenchymal stromal cells (MSC) isolated from non-corneal tissues. While the mechanism of MSC action seems likely to involve their immuno-modulatory properties, claims have emerged of MSC transdifferentiation into corneal cells. Substantial differences in methodology and experimental outcomes, however, have prompted us to perform a systematic review of the published data. Key questions used in our analysis included; the choice of markers used to assess corneal cell phenotype, the techniques employed to detect these markers, adequate reporting of controls, and tracking of MSC when studied in vivo. Our search of the literature revealed 28 papers published since 2006, with half appearing since 2012. MSC cultures established from bone marrow and adipose tissue have been best studied (22 papers). Critically, only 11 studies employed appropriate markers of corneal cell phenotype, along with necessary controls. Ten out of these 11 papers, however, contained positive evidence of corneal cell marker expression by MSC. The clearest evidence is observed with respect to expression of markers for corneal stromal cells by MSC. In comparison, the evidence for MSC conversion into either corneal epithelial cells or corneal endothelial cells is often inconsistent or inconclusive. Our analysis clarifies this emerging body of literature and provides guidance for future studies of MSC differentiation within the cornea as well as other tissues.
Resumo:
Tiziana Ferrero-Regis, guest editor of Vol. 1, issue 3, of Intellect journal Clothing Cultures. "Welcome to the third issue of Clothing Cultures. We are honoured to have served as the guest editors for this issue. The authors in this issue explore three intersecting themes in using various methods: identity, cross-cultural encounters and everyday practices related to designing, branding and wearing clothing. These themes are at the core of fashion and dress: as an everyday individual and social project, and as a system in which people and objects (clothing) globally circulate. The performance of identity (Goffman 1979; Butler 1990), social practices and the movement of people and commodities (Appadurai 1986, 1996) create and transfer cultural meanings..."
Resumo:
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.
Resumo:
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.
Resumo:
Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.
Resumo:
Limbal microvascular endothelial cells (L-MVEC) contribute to formation of the corneal-limbal stem cell niche and to neovascularization of diseased and injuries corneas. Nevertheless, despite these important roles in corneal health and disease, few attempts have been made to isolate L-MVEC with the view to studying their biology in vitro. We therefore explored the feasibility of generating primary cultures of L-MVEC from cadaveric human tissue. We commenced our study by evaluating growth conditions (MesenCult-XF system) that have been previously found to be associated with expression of the endothelial cell surface marker thrombomodulin/CD141, in crude cultures established from collagenase-digests of limbal stroma. The potential presence of L-MVEC in these cultures was examined by flow cytometry using a more specific marker for vascular endothelial cells, CD31/PECAM-1. These studies demonstrated that the presence of CD141 in crude cultures established using the MesenCult-XF system is unrelated to L-MVEC. Thus we subsequently explored the use of magnetic assisted cell sorting (MACS) for CD31 as a tool for generating cultures of L-MVEC, in conjunction with more traditional endothelial cell growth conditions. These conditions consisted of gelatin-coated tissue culture plastic and MCDB-131 medium supplemented with fetal bovine serum (10% v/v), D-glucose (10 mg/mL), epidermal growth factor (10 ng/mL), heparin (50 μg/mL), hydrocortisone (1 μg/mL) and basic fibroblast growth factor (10 ng/mL). Our studies revealed that use of endothelial growth conditions are insufficient to generate significant numbers of L-MVEC in primary cultures established from cadaveric corneal stroma. Nevertheless, through use of positive-MACS selection for CD31 we were able to routinely observe L-MVEC in cultures derived from collagenase-digests of limbal stroma. The presence of L-MVEC in these cultures was confirmed by immunostaining for von Willebrand factor (vWF) and by ingestion of acetylated low-density lipoprotein. Moreover, the vWF+ cells formed aligned cell-to-cell ‘trains’ when grown on Geltrex™. The purity of L-MVEC cultures was found to be unrelated to tissue donor age (32 to 80 years) or duration in eye bank corneal preservation medium prior to use (3 to 10 days in Optisol) (using multiple regression test). Optimal purity of L-MVEC cultures was achieved through use of two rounds of positive-MACS selection for CD31 (mean ± s.e.m, 65.0 ± 20.8%; p<0.05). We propose that human L-MVEC cultures generated through these techniques, in conjunction with other cell types, will provide a useful tool for exploring the mechanisms of blood vessel cell growth in vitro.
Resumo:
This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.
Resumo:
Aim Retinal tissue integrity in relation to diabetic neuropathy is not known. The aim of this study was to investigate retinal tissue thickness in relation to diabetic peripheral neuropathy (DPN) with and without diabetic retinopathy (DR). Methods Full retinal thickness at the parafoveal and perifoveal macula and neuro-retinal thickness around the optic nerve head (ONH) and at the macula was examined using spectral domain optical coherence tomography. The eye on the hand-dominant side of 85 individuals with type 1 diabetes and 66 individuals with type 2 diabetes, with or without DR and DPN, were compared to the eyes (n=45) of age-matched non-diabetic controls. Diabetic neuropathy was defined as Neuropathy Disability Score (NDS) ≥3 on a scale of 0-10. A general linear model was used to examine the relationship between diabetic neuropathy and foveal, parafoveal and perifoveal retinal thickness and neuro-retinal thickness, in relation to DR status, age, gender, HbA1c levels and duration of diabetes. A p-value of <0.05 was considered statistically significant. Results Perifoveal retinal thickness is reduced with increasing severity of neuropathy, especially in the inferior hemisphere (p=0.004); this effect was not related to age (p=0.088). For every unit increase in NDS score, the inferior perifoveal retinal thickness reduced by 1.64 μm. Neuro-retinal thickness around the ONH decreased with increasing severity of neuropathy (p<0.014 for average and hemisphere thicknesses); for every unit increase in NDS, neuro-retinal thickness around the ONH reduced by 1.23 μm. Retinal thickness in the parafovea was increased in the absence of DR (p<0.017 for average and hemisphere thicknesses). Neuro-retinal thickness at the macula was inversely related to age alone (p<0.001). All retinal parameters, except the inferior perifovea, reduced with advancing age (p<0.007 for all). Conclusions Diabetic neuropathy is associated with changes in full retinal thickness and neuro-retinal layers. This may represent a second threat to vision integrity, in addition to the better-characterised retinopathy. This study provides new knowledge about the anatomical aspects of the retinal tissue in relation to neuropathy and retinopathy.
Resumo:
Social marketing by Western governments that use fear tactics and threatening information to promote anti-drinking messages has polarized ‘binge drinking’ and ‘moderate drinking’ through a continuum that implies benefits and harms for both individuals and society. With the goal of extending insights into social marketing approaches that promote safer drinking cultures in Australia, we discuss findings from a study that examines alcohol consumers' moderate-drinking intentions. By applying the theory of planned behaviour and emotions theory, we discuss survey results from a sample of alcohol consumers, which demonstrate that positively framed value propositions that evoke happiness and love are more influential in the processing of an alcohol moderation message for alcohol consumers. The key limitations of this study are the cross-sectional nature of the data and the focal-dependent variable being behavioural intentions rather than behaviours. Research insight into the stronger influence of positive emotions on processing an alcohol moderation message establishes an important avenue for future social marketing communications that moves beyond negative, avoidance appeals to promote behaviour change in drinkers. These research findings will benefit professionals involved in developing social change campaigns that promote and reinforce consumers' positive intentions, with messages about the benefits of controlled, moderate drinking.
Resumo:
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Resumo:
Hydrogels are promising materials for cartilage repair, but the properties required for optimal functional outcomes are not yet known. In this study, we functionalized four materials that are commonly used in cartilage tissue engineering and evaluated them using in vitro cultures. Gelatin, hyaluronic acid, polyethylene glycol, and alginate were functionalized with methacrylic anhydride to make them photocrosslinkable. We found that the responses of encapsulated human chondrocytes were highly dependent on hydrogel type. Gelatin hydrogels supported cell proliferation and the deposition of a glycosaminoglycan rich matrix with significant mechanical functionality. However, cells had a dedifferentiated phenotype, with high expression of collagen type I. Chondrocytes showed the best redifferentiation in hyaluronic acid hydrogels, but the newly formed matrix was highly localized to the pericellular regions, and these gels degraded rapidly. Polyethylene glycol hydrogels, as a bioinert control, did not promote any strong responses. Alginate hydrogels did not support the deposition of new matrix, and the stiffness decreased during culture. The markedly different response of chondrocytes to these four photocrosslinkable hydrogels demonstrates the importance of material properties for chondrogenesis and extracellular matrix production, which are critical for effective cartilage repair.
Resumo:
Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.