383 resultados para Structure de causalité
Resumo:
Glycosaminoglycans (GAGs) are important complex carbohydrates that participate in many biological processes through the regulation of their various protein partners. Biochemical, structural biology and molecular modelling approaches have assisted in understanding the molecular basis of such interactions, creating an opportunity to capitalize on the large structural diversity of GAGs in the discovery of new drugs. The complexity of GAG–protein interactions is in part due to the conformational flexibility and underlying sulphation patterns of GAGs, the role of metal ions and the effect of pH on the affinity of binding. Current understanding of the structure of GAGs and their interactions with proteins is here reviewed: the basic structures and functions of GAGs and their proteoglycans, their clinical significance, the three-dimensional features of GAGs, their interactions with proteins and the molecular modelling of heparin binding sites and GAG–protein interactions. This review focuses on some key aspects of GAG structure–function relationships using classical examples that illustrate the specificity of GAG–protein interactions, such as growth factors, anti-thrombin, cytokines and cell adhesion molecules. New approaches to the development of GAG mimetics as possible new glycotherapeutics are also briefly covered.
Resumo:
The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
Resumo:
While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.
Resumo:
Settling, dewatering and filtration of flocs are important steps in industry to remove solids and improve subsequent processing. The influence of non-sucrose impurities (Ca2+, Mg2+, phosphate and aconitic acid) on calcium phosphate floc structure (scattering exponent, Sf), size and shape were examined in synthetic and authentic sugar juices using X-ray diffraction techniques. In synthetic juices, Sf decreases with increasing phosphate concentration to values where loosely bound and branched flocs are formed for effective trapping and removal of impurities. Although, Sf did not change with increasing aconitic acid concentration, the floc size significantly decreased reducing the ability of the flocs to remove impurities. In authentic juices, the flocs structures were marginally affected by increasing proportions of non-sucrose impurities. However, optical microscopy indicated the formation of well-formed macro-floc network structures in sugar cane juices containing lower proportions of non-sucrose impurities. These structures are better placed to remove suspended colloidal solids.
Resumo:
Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically strong qualities, and the two internal void spaces can confine and accommodate volume expansion of silicon during lithiation. Therefore, these specially designed dual yolk-shell structures exhibit a stable and high capacity of 956 mA h g−1 after 430 cycles with capacity retention of 83%, while the capacity of Si/C core-shell structures rapidly decreases in the first ten cycles under the same experimental conditions. The novel dual yolk-shell structures developed for Si can also be extended to other battery materials that undergo large volume changes.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.
Resumo:
This paper addresses the problem of discovering business process models from event logs. Existing approaches to this problem strike various tradeoffs between accuracy and understandability of the discovered models. With respect to the second criterion, empirical studies have shown that block-structured process models are generally more understandable and less error-prone than unstructured ones. Accordingly, several automated process discovery methods generate block-structured models by construction. These approaches however intertwine the concern of producing accurate models with that of ensuring their structuredness, sometimes sacrificing the former to ensure the latter. In this paper we propose an alternative approach that separates these two concerns. Instead of directly discovering a structured process model, we first apply a well-known heuristic technique that discovers more accurate but sometimes unstructured (and even unsound) process models, and then transform the resulting model into a structured one. An experimental evaluation shows that our “discover and structure” approach outperforms traditional “discover structured” approaches with respect to a range of accuracy and complexity measures.