482 resultados para Plots (Drama, novel, etc.)
Resumo:
Nowadays, integration of small-scale electricity generators, known as Distributed Generation (DG), into distribution networks has become increasingly popular. This tendency together with the falling price of DG units has a great potential in giving the DG a better chance to participate in voltage regulation process, in parallel with other regulating devices already available in the distribution systems. The voltage control issue turns out to be a very challenging problem for distribution engineers, since existing control coordination schemes need to be reconsidered to take into account the DG operation. In this paper, a control coordination approach is proposed, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimize the interaction of DG with another DG or other active devices, such as On-load Tap Changing Transformer (OLTC). The proposed technique has been developed based on the concepts of protection principles (magnitude grading and time grading) for response coordination of DG and other regulating devices and uses Advanced Line Drop Compensators (ALDCs) for implementation. A distribution feeder with tap changing transformer and DG units has been extracted from a practical system to test the proposed control technique. The results show that the proposed method provides an effective solution for coordination of DG with another DG or voltage regulating devices and the integration of protection principles has considerably reduced the control interaction to achieve the desired voltage correction.
Resumo:
In this chapter we consider how the iPad and selected applications such as Draw and Tell (Duck Duck Moose, 2013), Popplet (Notion Inc., 2013) and Puppet Pals (Polished Play LLC, 2013) can assist children in collaborative storying, retelling and sequencing story moments that can assist young children in their acquisition of oracy and their understanding of the world, both real and imagined, and their personal relationships. The data gathered from the project will also analysed through the lense of “critical and creative thinking” (ACARA, 2013, p.20-21) skills articulated as one of the general capabilities required in all subject areas of the Australian national curriculum, but which has particular application to The Arts subject areas. In this chapter, we consider artefacts created by preschool children using iPads and selected apps and interviews conducted with preschool children and their caregivers during our research project. We then offer examples of practice to assist preschool teachers in supporting children in their storymaking using the iPad and discuss approaches for engagement that twins the live and mediatised representation of a story.
Resumo:
The combination of thermally- and photochemically-induced polymerization using light sensitive alkoxyamines was investigated. The thermally driven polymerizations were performed via the cleavage of the alkoxyamine functionality, whereas the photochemically-induced polymerizations were carried out either by nitroxide mediated photo-polymerization (NMP2) or by a classical type II mechanism, depending on the structure of the light-sensitive alkoxyamine employed. Once the potential of the various structures as initiators of thermally- and photo-induced polymerizations was established, their use in combination for block copolymer syntheses was investigated. With each alkoxyamine investigated, block copolymers were successfully obtained and the system was applied to the post-modification of polymer coatings for application in patterning and photografting.
Resumo:
This study investigated interactions of protein-cleaving enzymes (or proteases) that promote prostate cancer progression. It provides the first evidence of a novel regulatory network of protease activity at the surface of cells. The proteases kallikrein-related peptidases 4 and 14, and matrix metalloproteinases 3 and 9 are cleaved at the cell surface by the cell surface proteases hepsin and TMPRSS2. These cleavage events potentially regulate activation of downstream targets of kallikrein 4 and 14 such as cell surface signalling via the protease-activated receptors (PARs) and cell growth-promoting factors such as hepatocyte-growth factor.
Resumo:
Mechanically interlocked molecules, such as catenanes and rotaxanes, are fascinating due to their unique sensing and catalytic properties and their potential to act as molecular motors or switches. Traditionally their synthesis has been laborious and expensive, however this research project endeavoured to overcome this challenge by exploring novel ways of preparing mechanically interlocked molecules both in solution and on surfaces. A series of disulfide-linked macrocycles, [2]catenanes and [2]rotaxanes were synthesised in solution using reversible dynamic covalent chemistry. Subsequently, the interlocked architectures were adapted into solid-tethered systems via attachment to swelling polystyrene resins.
Resumo:
The construction industry is a crucial component of the Hong Kong economy, and the safety and efficiency of workers are two of its main concerns. The current approach to training workers relies primarily on instilling practice and experience in conventional teacher-apprentice settings on and off site. Both have their limitations however, on-site training is very inefficient and interferes with progress on site, while off-site training provides little opportunity to develop the practical skills and awareness needed through hands-on experience. A more effective way is to train workers in safety awareness and efficient working by current novel information technologies. This paper describes a new and innovative prototype system – the Proactive Construction Management System (PCMS) – to train precast installation workers to be highly productive while being fully aware of the hazards involved. PCMS uses Chirp-Spread-Spectrum-based (CSS) real-time location technology and Unity3D-based data visualisation technology to track construction resources (people, equipment, materials, etc.) and provide real-time feedback and post-event visualisation analysis in a training environment. A trial of a precast facade installation on a real site demonstrates the benefits gained by PCMS in comparison with equivalent training using conventional methods. It is concluded that, although the study is based on specific industrial conditions found in Hong Kong construction projects, PCMS may well attract wider interest and use in future.
Resumo:
The novel pyrazolo[3,4-d]pyrimidine compound GU285 (4-amino-6-alpha-carbamoylethylthio-1- phenylpyrazolo[3,4-d]pyrimidine, CAS 134896-40-5) was examined for its ability (1) to inhibit binding of adenosine (ADO) receptor ligands in rat brain membranes, (2) to antagonise functional responses to ADO agonists in rat right and left atria and coronary resistance vessels, and (3) to reduce the fall in heart rate and arterial blood pressure produced by the ADO A1 agonist N6-cyclopentyladenosine (CPA) in the intact, anaesthetized rat. GU285 competitively inhibited binding of the ADO A1 agonist [3H]-R-N6-phenylisopropyladenosine (R-PIA) yielding a Ki value of 11 (7-18) nmol.l-1 (geometric mean +/- 95% Cl). When assayed against the ADO A2A selective agonist [3H]-2-[p-(2-carboxyethyl)- phenethylamino]-5'-N-ethylcarboxamidoadenosine, (CGS21680), a Ki of 15 (10-24) nmol.l-1 was obtained. In spontaneously beating right atria, GU285 competitively antagonized negative chronotropic effects of R-PIA with a pA2 of 8.7 +/- 0.3 and in electrically paced left atria, GU285 competitively antagonized negative inotropic effects of R-PIA with a pA2 of 9.0 +/- 0.1. In the potassium-arrested, perfused rat heart GU285 (1 mumol.l-1) antagonized only the high sensitivity, ADO A2B mediated component of the biphasic relaxation of the coronary vasculature produced by NECA. The low sensitivity component was unchanged. GU285 (1 mumol.kg-1) antagonized the negative chronotropic and hypotensive effects of the adenosine A1 agonist CPA in anaesthetized rats, producing a 10-fold rightward shift in the dose-response relationship. These data demonstrate that in the rat, GU285 is a potent, non-selective adenosine receptor antagonist that maintains its activity in vivo.
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.
Resumo:
This paper reports on a collaborative research project between the Faculty of Health Sciences at the University of Ottawa, Triathlon Canada, and the Coaching Association of Canada (CAC). It was designed around a lifelong learner perspective and the Organization for Economic Cooperation and Development’s (OECD) qualifications system. In this paper, we first review the coach learning literature as it pertains to the CAC. We then highlight the background and perspective of a high performance director’s experience in designing and attempting to implement a novel coach education training program. In doing so we uncover the frustrations and tensions in trying to balance innovation with prescribed process and policy. We conclude by making suggestions for further research specifically focused on the background of the key agents involved with the design, implementation and administration of coach education training programs in the competition-development context of the NCCP.
Resumo:
Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experimental oligomer profiles. The efficacy of mathematical models as hydrolysis yield predictors and as vehicles for investigating the mechanisms of acid hydrolysis is also examined. Experimental xylose, oligomer (degree of polymerisation 2 to 6) and furfural yield profiles were obtained for bagasse under dilute acid hydrolysis conditions at temperatures ranging from 110C to 170C. Population balance kinetics, diffusion and porosity evolution were incorporated into a mathematical model of the acid hydrolysis of sugarcane bagasse. This model was able to produce a good fit to experimental xylose yield data with only three unknown kinetic parameters ka, kb and kd. However, fitting this same model to an expanded data set of oligomeric and furfural yield profiles did not successfully reproduce the experimental results. It was found that a ``hard-to-hydrolyse'' parameter, $\alpha$, was required in the model to ensure reproducibility of the experimental oligomer profiles at 110C, 125C and 140C. The parameters obtained through the fitting exercises at lower temperatures were able to be used to predict the oligomer profiles at 155C and 170C with promising results. The interpretation of kinetic parameters obtained by fitting a model to only a single set of data may be ambiguous. Although these parameters may correctly reproduce the data, they may not be indicative of the actual rate parameters, unless some care has been taken to ensure that the model describes the true mechanisms of acid hydrolysis. It is possible to challenge the robustness of the model by expanding the experimental data set and hence limiting the parameter space for the fitting parameters. The novel combination of ``hard-to-hydrolyse'' and population balance dynamics in the model presented here appears to stand up to such rigorous fitting constraints.
Resumo:
Over the last two decades, Transcutaneous Bone-Anchored Prosthesis (TCBAP) has proven to be an effective alternative for prosthetic attachment for amputees, particularly for individuals unable to wear a socket. However, the load transmitted through a typical TCBAP to the residual tibia and knee joint can be unbearable for transtibial amputees with knee arthritis. The aims of this study are (A) to describe the surgical procedure combining TKR with TCBAP for the first time; and (B) to present preliminary data on potential risks and benefits with assessment of clinical and functional outcomes at follow up.