440 resultados para Molecular spectra.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gilalite is a copper silicate mineral with a general formula of Cu5Si6O17 · 7H2O. The mineral is often found in association with another copper silicate mineral, apachite, Cu9Si10O29 · 11H2O. Raman and infrared spectroscopy have been used to characterize the molecular structure of gilalite. The structure of the mineral shows disorder, which is reflected in the difficulty of obtaining quality Raman spectra. Raman spectroscopy clearly shows the absence of OH units in the gilalite structure. Intense Raman bands are observed at 1066, 1083, and 1160 cm−1. The Raman band at 853 cm−1 is assigned to the –SiO3 symmetrical stretching vibration and the low-intensity Raman bands at 914, 953, and 964 cm−1 may be ascribed to the antisymmetric SiO stretching vibrations. An intense Raman band at 673 cm−1 with a shoulder at 663 cm−1 is assigned to the ν4 Si-O-Si bending modes. Raman spectroscopy complemented with infrared spectroscopy enabled a better understanding of the molecular structure of gilalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV–vis spectroscopies under pseudo-physiological conditions (Tris–HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA–BDM complex and the binding number were 5.14 × 105 L mol−1 and 1.0, respectively. Spectroscopic studies for the formation of BDM–BSA complex were interpreted with the use of multivariate curve resolution – alternating least squares (MCR–ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin – site I and ibuprofen – site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation–emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM–BSA complex, the BDM was replaced and the DXM–BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Keywords: organic solar cell; organic photovoltaic; diketopyrrolopyrrole; chemical doping; spectroelectrochemistry; photoinduced absorption; hole polaron

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the boron containing mineral ezcurrite Na4B10O17·7H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1037 cm−1 is assigned to BO stretching vibration. Raman bands at 1129, 1163, 1193 cm−1 are attributed to BO stretching vibration of the tetrahedral units. The Raman band at 947 cm−1 is attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 1037 cm−1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03) × (1037) = 1048 cm−1, and indeed a small peak at 1048 is observed. The broad Raman bands at 3186, 3329, 3431, 3509, 3547 and 3576 cm−1 are assigned to water stretching vibrations. Broad infrared bands at 3170, 3322, 3419, 3450, 3493, 3542, 3577 and 3597 cm−1 are also assigned to water stretching vibrations. Infrared bands at 1330, 1352, 1389, 1407, 1421 and 1457 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. The observation of so many bands suggests that there is considerable variation in the structure of ezcurrite. Infrared bands at 1634, 1646 and 1681 cm−1 are assigned to water bending modes. The number of water bending modes is in harmony with the number of water stretching vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of two well-defined types of cobaltkoritnigite and koritnigite crystals were recorded and interpreted. Significant differences in the Raman spectra of cobaltkoritnigite and koritnigite were observed. Observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Both Raman and infrared spectra of cobaltkoritnigite identify bands which are attributable to phosphate and hydrogen phosphate anions proving some substitution of phosphate for arsenate in the structure of cobaltkoritnigite. The OH⋯O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of cobaltkoritnigite and koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the molecular structure of the mineral of plumbophyllite. The Raman spectrum is dominated by a very intense sharp peak at 1027 cm−1, assigned to the SiO stretching vibrations of (SiO3)n units. A very intense Raman band at 643 cm−1 is assigned to the bending mode of (SiO3)n units. Raman bands observed at 3215, 3443, 3470, 3494 and 3567 cm−1 are assigned to water stretching vibrations. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces. Because of the close similarity in the structure of plumbophyllite and apophyllite, a comparison of the spectra with that of apophyllites is made. By using vibrational spectroscopy an assessment of the molecular structure of plumbophyllite has been made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of two well-defined ferrimolybdite samples, Fe23+(Mo6+O4)3·7–8H2O, from the Krupka deposit (northern Bohemia, Czech Republic) and Hůrky near Rakovník occurrence (central Bohemia, Czech Republic) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of molybdate anions, Fe–O units and water molecules. Number of Raman and infrared bands assigned to (MoO4)2− units and water molecules proved that symmetrically (structurally) nonequivalent (MoO4)2− and H2O are present in the crystal structure of ferrimolybdite. Approximate O–H⋯O hydrogen bond lengths (2.80–2.73 Å) were inferred from the published infrared spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.