762 resultados para Heine Safety Boiler Co.
Resumo:
Examining the evolution of British and Australian policing, this comparative review of the literature considers the historical underpinnings of policing in these two countries and the impact of community legitimacy derived from the early concepts of policing by consent. Using the August 2011 disorder in Britain as a lens, this paper considers whether, in striving to maintain community confidence, undue emphasis is placed on the police's public image at the expense of community safety. Examining the path of policing reform, the impact of bureaucracy on policing and the evolving debate surrounding police performance, this review suggests that, while largely delivering on the ideal of an ethical and strong police force, a preoccupation with self-image may in fact result in tarnishing the very thing British and Australian police forces strive to achieve – their standing with the public. This paper advocates for a more realistic goal of gaining public respect rather than affection in order to achieve the difficult balance between maintaining trust and respect as an approachable, ethical entity providing firm, confident policing in this ever-evolving, modern society.
Resumo:
This thesis highlights the limitations of the existing car following models to emulate driver behaviour for safety study purposes. It also compares the capabilities of the mainstream car following models emulating driver behaviour precise parameters such as headways and Time to Collisions. The comparison evaluates the robustness of each car following model for safety metric reproductions. A new car following model, based on the personal space concept and fish school model is proposed to simulate more precise traffic metrics. This new model is capable of reflecting changes in the headway distribution after imposing the speed limit form VSL systems. This research facilitates assessing Intelligent Transportation Systems on motorways, using microscopic simulation.
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
Infrared spectra of NO, NO2 and CO adsorbed on Rh/Al2O3 have been recorded in order to identify the role of surface Rh-NO+ species in the reactions of NO and CO on Rh surfaces. Rh-NO+ was generated by thermally activated adsorption of NO, adsorption of NO on oxidised Rh or by adsorption of NO2. The latter also gave adsorbed nitrate on both Rh and the alumina support. In the presence of CO, Rh-NO+ acted as a precursor of the Rh(CO)(NO) mixed surface complex of CO and NO.
Resumo:
FTIR spectra are reported of CO adsorbed on silica-supported copper catalysts prepared from copper(II) acetate monohydrate. Fully oxidised catalyst gave bands due to CO on CuO, isolated Cu2+ cations on silica and anion vacancy sites in CuO. The highly dispersed CuO aggregated on reduction to metal particles which gave bands due to adsorbed CO characteristic of both low-index exposed planes and stepped sites on high-index planes. Partial surface oxidation with N2O or H2O generated Cu+ adsorption sites which were slowly reduced to Cu° by CO at 300 K. Surface carbonate initially formed from CO was also slowly depleted with time with the generation of CO2. The results are consistent with adsorbed carbonate being an intermediate in the water-gas shift reaction of H2O and CO to H2 and CO2.
Resumo:
FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.
Resumo:
The reaction of CO2 and H2 with ZnO/SiO2 catalyst at 295 K gave predominantly hydrogencarbonate on zinc oxide and a small quantity of formate was evolved after heating at 393 K. Elevation of the reaction temperature to 503 K enhanced the rate of formation of zinc formate species. Significantly these formate species decomposed at 573 K almost entirely to CO2 and H2. Even after exposure of CO2-H2 or CO-CO2-H2 mixtures to highly defected ZnO/SiO2 catalyst, the formate species produced still decomposed to give CO2 and H2. It was concluded that carboxylate species which were formed at oxygen anion vacancies on polar Zn planes were not significantly hydrogenated to formate. Consequently it was proposed that the non-polar planes on zinc oxide contained sites which were specific for the synthesis of methanol. The interaction of CO2 and H2 with reduced Cu/ZnO/SiO2 catalyst at 393 K gave copper formate species in addition to substantial quantities of formate created at interfacial sites between copper and zinc oxide. It was deduced that interfacial formate species were produced from the hydrogenation of interfacial bidentate carbonate structures. The relevance of interfacial formate species in the methanol synthesis reaction is discussed. Experiments concerning the reaction of CO2-H2 with physical mixtures of Cu/SiO2 and ZnO/SiO2 gave results which were simply characteristic of the individual components. By careful consideration of previous data a detailed proposal regarding the role of spillover hydrogen is outlined. Admission of CO to a gaseous CO2-H2 feedstock resulted in a considerably diminished amount of formate species on copper. This was ascribed to a combination of over-reduction of the surface and site-blockage.
Resumo:
Dedicated Short Range Communication (DSRC) is the emerging key technology supporting cooperative road safety systems within Intelligent Transportation Systems (ITS). The DSRC protocol stack includes a variety of standards such as IEEE 802.11p and SAE J2735. The effectiveness of the DSRC technology depends on not only the interoperable cooperation of these standards, but also on the interoperability of DSRC devices manufactured by various manufacturers. To address the second constraint, the SAE defines a message set dictionary under the J2735 standard for construction of device independent messages. This paper focuses on the deficiencies of the SAE J2735 standard being developed for deployment in Vehicular Ad-hoc Networks (VANET). In this regard, the paper discusses the way how a Basic Safety Message (BSM) as the fundamental message type defined in SAE J2735 is constructed, sent and received by safety communication platforms to provide a comprehensive device independent solution for Cooperative ITS (C-ITS). This provides some insight into the technical knowledge behind the construction and exchange of BSMs within VANET. A series of real-world DSRC data collection experiments was conducted. The results demonstrate that the reliability and throughput of DSRC highly depend on the applications utilizing the medium. Therefore, an active application-dependent medium control measure, using a novel message-dissemination frequency controller, is introduced. This application level message handler improves the reliability of both BSM transmissions/receptions and the Application layer error handling which is extremely vital to decentralized congestion control (DCC) mechanisms.
Resumo:
Patient safety has become a significant and pressing policy issue. Around the world, governments, the health care sector and the public are increasingly cognizant of the need to improve the safety of care delivered by their health systems. Pressure for change has been created by highly publicized incidents in a number of countries involving unsafe acts that were significant both in scale and consequence and a number of empirical studies that revealed the high rates of unsafe acts and their consequences. The costs of unsafe health care – both personal and fiscal – to individuals, their families and their communities and to the state are massive. In this research project we explored one particular avenue for change – that is, the use of legal instruments by governments to improve patient safety. We did this through a comparative review of the use of legal instruments or frameworks in other countries (specifically Australia, Denmark, New Zealand, the United Kingdom, and the United States) as well as two non-health care related sectors in Canada (transportation and occupational health and safety). We began this research by reviewing the legal instruments and undertaking extensive literature reviews. Further information was gathered through in-person interviews with policy-makers and academics in the countries studied, and from policy-makers and academics expert in the health, occupational health and safety, and transportation sectors in Canada. Once descriptions of the various countries and sectors were drafted, we held small-group meetings with local experts on particular aspects of patient safety. We then hosted a national consultation meeting. We subsequently drafted this final report and the appendices, which fully describe the results of the background research. Finally, we prepared a summary version of the report as well as posters and papers to be published and delivered at conferences and meetings with relevant groups.
Resumo:
This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.
Resumo:
This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.
Resumo:
This paper describes the work being conducted in the baseline rail level crossing project, supported by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper discusses the limitations of near-miss data for analysis obtained using current level crossing occurrence reporting practices. The project is addressing these limitations through the development of a data collection and analysis system with an underlying level crossing accident causation model. An overview of the methodology and improved data recording process are described. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.