387 resultados para Dynamic susceptibility
Resumo:
BACKGROUND: Endometriosis is a common disease with a heritable component. The collaborative International Endogene Study consists of two data sets (Oxford and Australia) comprising 1176 families with multiple affected. The aim was to investigate whether the apparent concentration of cases in a proportion of families could be explained by one or more rare variants with (near-)Mendelian autosomal inheritance. METHODS AND RESULTS: Linkage analyses (aimed at finding chromosomal regions harbouring disease-predisposing genes) were conducted in families with three or more affected (Oxford: n = 52; Australia: n = 196). In the Oxford data set, a non-parametric linkage score (Kong & Cox (K&C) Log of ODds (LOD)) of 3.52 was observed on chromosome 7p (genome-wide significance P = 0.011). A parametric MOD score (equal to maximum LOD maximized over 357 possible inheritance models) of 3.89 was found at 65.72 cM (D7S510) for a dominant model with reduced penetrance. After including the Australian data set, the non-parametric K&C LOD of the combined data set was 1.46 at 57.3 cM; the parametric analysis found an MOD score of 3.30 at D7S484 (empirical significance: P = 0.035) for a recessive model with high penetrance. Critical recombinant analysis narrowed the probable region of linkage down to overlapping 6.4 Mb and 11 Mb intervals containing 48 and 96 genes, respectively. CONCLUSIONS: This is the first report to suggest that there may be one or more high-penetrance susceptibility loci for endometriosis with (near-)Mendelian inheritance.
Resumo:
The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.
Resumo:
The commonly used "end diagnosis" phenotype that is adopted in linkage and association studies of complex traits is likely to represent an oversimplified model of the genetic background of a disease. This is also likely to be the case for common types of migraine, for which no convincingly associated genetic variants have been reported. In headache disorders, most genetic studies have used end diagnoses of the International Headache Society (IHS) classification as phenotypes. Here, we introduce an alternative strategy; we use trait components--individual clinical symptoms of migraine--to determine affection status in genomewide linkage analyses of migraine-affected families. We identified linkage between several traits and markers on chromosome 4q24 (highest LOD score under locus heterogeneity [HLOD] 4.52), a locus we previously reported to be linked to the end diagnosis migraine with aura. The pulsation trait identified a novel locus on 17p13 (HLOD 4.65). Additionally, a trait combination phenotype (IHS full criteria) revealed a locus on 18q12 (HLOD 3.29), and the age at onset trait revealed a locus on 4q28 (HLOD 2.99). Furthermore, suggestive or nearly suggestive evidence of linkage to four additional loci was observed with the traits phonophobia (10q22) and aggravation by physical exercise (12q21, 15q14, and Xp21), and, interestingly, these loci have been linked to migraine in previous studies. Our findings suggest that the use of symptom components of migraine instead of the end diagnosis provides a useful tool in stratifying the sample for genetic studies.
Resumo:
Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite >50 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families (931 from an Australian group and 245 from a U.K. group), each with at least two members--mainly affected sister pairs--with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 (maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 (MLS = 2.09). Minor peaks (with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments.
Resumo:
Utilizing DNA samples from 91 Afrikaner nuclear families with one or more affected children, five genomic regions on chromosomes 2p, 8q, 11q, 20q, and 21q that gave evidence for association with GTS in previous case-control association studies were investigated for linkage and association with GTS. Highly polymorphic markers with mean heterozygosity of 0.77 were typed and resulting genotypes evaluated using single marker transmission disequilibrium (TDT), single marker haplotype relative risk (HRR), and multi-marker "extended" TDT and HRR methods. Single marker TDT analysis showed evidence for linkage or association, with p-values near 0.05, for markers D2S139, GATA28F12, and D11S1377 on chromosomes 2p11, 8q22 and 11q23-24, respectively. Extended, two-locus TDT and HRR analysis provided further evidence for linkage or association on chromosome 2 with p-values of 0.007 and 0.025, and chromosome 8 with p-values of 0.059 and 0.013, respectively. These results provide important additional evidence for the location of GTS susceptibility loci.
Resumo:
We report the analysis of 335 microsatellite markers genotyped in 110 multiplex families with autism. All families include at least two "affected" siblings, at least one of whom has autism; the remaining affected sibs carry diagnoses of either Asperger syndrome or pervasive developmental disorder. Affected sib-pair analysis yielded multipoint maximum LOD scores (MLS) that reach the accepted threshold for suggestive linkage on chromosomes 5, X, and 19. Nominal evidence for linkage (point-wise P<.05) was obtained on chromosomes 2, 3, 4, 8, 10, 11, 12, 15, 16, 18, and 20, and secondary loci were found on chromosomes 5 and 19. Analysis of families sharing alleles at the putative X chromosomal linked locus and one or more other putative linked loci produced an MLS of 3.56 for the DXS470-D19S174 marker combination. In an effort to increase power to detect linkage, scan statistics were used to evaluate the significance of peak LOD scores based on statistical evidence at adjacent marker loci. This analysis yielded impressive evidence for linkage to autism and autism-spectrum disorders with significant genomewide P values <.05 for markers on chromosomes 5 and 8 and with suggestive linkage evidence for a marker on chromosome 19.
Resumo:
Accounting information systems (AIS) capture and process accounting data and provide valuable information for decision-makers. However, in a rapidly changing environment, continual management of the AIS is necessary for organizations to optimise performance outcomes. We suggest that building a dynamic AIS capability enables accounting process and organizational performance. Using the dynamic capabilities framework (Teece 2007) we propose that a dynamic AIS capability can be developed through the synergy of three competencies: a flexible AIS, having a complementary business intelligence system and accounting professionals with IT technical competency. Using survey data, we find evidence of a positive association between a dynamic AIS capability, accounting process performance, and overall firm performance. The results suggest that developing a dynamic AIS resource can add value to an organization. This study provides guidance for organizations looking to leverage the performance outcomes of their AIS environment.
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
Background Breast cancer (BC) is primarily considered a genetic disorder with a complex interplay of factors including age, gender, ethnicity, family history, personal history and lifestyle with associated hormonal and non-hormonal risk factors. The SNP rs2910164 in miR146a (a G to C polymorphism) was previously associated with increased risk of BC in cases with at least a single copy of the C allele in breast cancer, though results in other cancers and populations have shown significant variation. Methods In this study, we examined this SNP in an Australian sporadic breast cancer population of 160 cases and matched controls, with a replicate population of 403 breast cancer cases using High Resolution Melting. Results Our analysis indicated that the rs2910164 polymorphism is associated with breast cancer risk in both primary and replicate populations (p = 0.03 and 0.0013, respectively). In contrast to the results of familial breast cancer studies, however, we found that the presence of the G allele of rs2910164 is associated with increased cancer risk, with an OR of 1.77 (95% CI 1.40–2.23). Conclusions The microRNA miR146a has a potential role in the development of breast cancer and the effects of its SNPs require further inquiry to determine the nature of their influence on breast tissue and cancer.
Resumo:
Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.
Resumo:
The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.
Resumo:
There are 23,500 level crossings in Australia. In these types of environments it is important to understand what human factor issues are present and how road users and pedestrians engage with crossings. A series of on-site observations were performed over a 2-day period at a 3-track active crossing. This was followed by 52 interviews with local business owners and members of the public. Data were captured using a manual-coding scheme for recording and categorising violations. Over 700 separate road user and pedestrian violations were recorded, with representations in multiple categories. Time stamping revealed that the crossing was active for 59% of the time in some morning periods. Further, trains could take up to 4-min to arrive following its first activation. Many pedestrians jaywalked under side rails and around active boom gates. In numerous cases pedestrians put themselves at risk in order to beat or catch the approaching train, ignored signs to stop walking when the lights were flashing. Analysis of interview data identified themes associated with congestion, safety, and violations. This work offers insight into context specific issues associated with active level crossing protection.