672 resultados para Cell pressure
Resumo:
Objective: To evaluate responses to self-administered brief questions regarding consumption of vegetables and fruit by comparison with blood levels of serum carotenoids and red-cell folate. Design: A cross-sectional study in which participants reported their usual intake of fruit and vegetables in servings per day, and serum levels of five carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and lycopene) and red-cell folate were measured. Serum carotenoid levels were determined by high-performance liquid chromatography, and red-cell folate by an automated immunoassay system. Settings and subjects: Between October and December 2000, a sample of 1598 adults aged 25 years and over, from six randomly selected urban centres in Queensland, Australia, were examined as part of a national study conducted to determine the prevalence of diabetes and associated cardiovascular risk factors. Results: Statistically significant (P<0.01) associations with vegetable and fruit intake (categorised into groups: ≤1 serving, 2–3 servings and ≥4 servings per day) were observed for α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and red-cell folate. The mean level of these carotenoids and of red-cell folate increased with increasing frequency of reported servings of vegetables and fruit, both before and after adjusting for potential confounding factors. A significant association with lycopene was observed only for vegetable intake before adjusting for confounders. Conclusions: These data indicate that brief questions may be a simple and valuable tool for monitoring vegetable and fruit intake in this population.
Resumo:
Tumor hypoxia has been recognized to confer resistance to anticancer therapy since the early 20th century. More recently, its fundamental role in tumorigenesis has been established. Hypoxia-inducible factor (HIF)-1 has been identified as an important transcription factor that mediates the cellular response to hypoxia, promoting both cellular survival and apoptosis under different conditions. Increased tumor cell expression of this transcription factor promotes tumor growth In vivo and is associated with a worse prognosis in patients with non-small-cell lung cancer (NSCLC) undergoing tumor resection. The epidermal growth factor receptor (EGFR) promotes tumor cell proliferation and anglogenesis and inhibits apoptosis. Epidermal growth factor receptor expression increases in a stepwise manner during tumorigenesis and is overexpressed in > 50% of NSCLC tumors. This review discusses the reciprocal relationship between tumor cell hypoxia and EGFR. Recent studies suggest that hypoxia induces expression of EGFR and its ligands. In return, EGFR might enhance the cellular response to hypoxia by increasing expression of HIF-1α, and so act as a survival factor for hypoxic cancer cells. Immunohistochemical studies on a series of resected NSCLC tumors add weight to this contention by demonstrating a close association between expression of EGFR, HIF-1α, and:1 of HIF-1's target proteins, carbonic anhydrase IX. In this article we discuss emerging treatment strategies for NSCLC that target HIF-1, HIF-1 transcriptional targets, and EGFR.
Resumo:
The aim of this phase I/II dose escalating study was to establish the maximum tolerated dose (MTD) of gemcitabine and paclitaxel given in combination in non-small cell lung cancer (NSCLC). 12 patients with stage IIIB and IV NSCLC received paclitaxel administered intravenously over 1 h followed by gemcitabine given over 30 min on days 1, 8 and 15 every 28 days. Pneumonitis was the principal side-effect observed with 4 patients affected. Of these, 1 experienced grade 3 toxicity after one cycle of treatment and the others had grade 2 toxicity. All 4 cases responded to prednisolone. No other significant toxicities were observed. Of the 8 evaluable patients, 3 had a partial response and 2 had minor responses. The study was discontinued due to this dose-limiting toxicity. The combination of paclitaxel and gemcitabine shows promising antitumour activity in NSCLC, however, this treatment schedule may predispose to pneumonitis. (C) 2000 Elsevier Science Ltd.
Resumo:
Purpose The role played by the innate immune system in determining survival from non-small-cell lung cancer (NSCLC) is unclear. The aim of this study was to investigate the prognostic significance of macrophage and mast-cell infiltration in NSCLC. Methods We used immunohistochemistry to identify tryptase+ mast cells and CD68+ macrophages in the tumor stroma and tumor islets in 175 patients with surgically resected NSCLC. Results Macrophages were detected in both the tumor stroma and islets in all patients. Mast cells were detected in the stroma and islets in 99.4% and 68.5% of patients, respectively. Using multivariate Cox proportional hazards analysis, increasing tumor islet macrophage density (P < .001) and tumor islet/stromal macrophage ratio (P < .001) emerged as favorable independent prognostic indicators. In contrast, increasing stromal macrophage density was an independent predictor of reduced survival (P = .001). The presence of tumor islet mast cells (P = .018) and increasing islet/stromal mast-cell ratio (P = .032) were also favorable independent prognostic indicators. Macrophage islet density showed the strongest effect: 5-year survival was 52.9% in patients with an islet macrophage density greater than the median versus 7.7% when less than the median (P < .0001). In the same groups, respectively, median survival was 2,244 versus 334 days (P < .0001). Patients with a high islet macrophage density but incomplete resection survived markedly longer than patients with a low islet macrophage density but complete resection. Conclusion The tumor islet CD68+ macrophage density is a powerful independent predictor of survival from surgically resected NSCLC. The biologic explanation for this and its implications for the use of adjunctive treatment requires further study. © 2005 by American Society of Clinical Oncology.
Resumo:
We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.
Resumo:
Viroids and most viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selection pressure shaping the evolution of the secondary structures of these pathogens.
Resumo:
Red Blood Cells (RBCs) exhibit different types of motions and different deformed shapes, when they move through capillaries. RBCs can travel through capillaries having smaller diameters than RBCs’ diameter, due to the capacity of high deformability of the viscoelastic RBC membrane. The motion and the steady state shape of the RBCs depend on many factors, such as the geometrical parameters of the microvessel through which blood flows, the RBC membrane bending stiffness and the flow velocity. In this study, the effect of the RBC’s membrane stiffness on the deformation of a single RBC in a stenosed capillary is comprehensively examined. Smoothed Particle Hydrodynamics (SPH) in combination with the two-dimensional spring network membrane model is used to investigate the motion and the deformation property of the RBC. The simulation results demonstrate that the membrane bending stiffness of the RBC has a significant impact on the RBCs’ deformability.
Resumo:
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Resumo:
Background: Diabetic peripheral neuropathy is an important cause of foot ulceration and limb loss. This systematic review and meta-analysis investigated the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and dynamic plantar pressures. Methods: Electronic databases were searched systematically for articles reporting the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and plantar pressures. Searches were restricted to articles published between January 2000 and April 2012. Outcome measures assessed included spatiotemporal parameters, lower limb kinematics, kinetics, muscle activation and plantar pressure. Meta-analyses were carried out on all outcome measures reported by ≥3 studies. Findings: Sixteen studies were included consisting of 382 neuropathy participants, 216 diabetes controls without neuropathy and 207 healthy controls. Meta-analysis was performed on 11 gait variables. A high level of heterogeneity was noted between studies. Meta-analysis results suggested a longer stance time and moderately higher plantar pressures in diabetic peripheral neuropathy patients at the rearfoot, midfoot and forefoot compared to controls. Systematic review of studies suggested potential differences in the biomechanical characteristics (kinematics, kinetics, EMG) of diabetic neuropathy patients. However these findings were inconsistent and limited by small sample sizes.; Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies. Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies.
Resumo:
Objectives Actigraphy can reliably assess sleep in healthy adults and be used to estimate total sleep time in suspected obstructive sleep apnoea (OSA) patients. We compared sleep quality for Continuous Positive Air Pressure (CPAP) treated OSA patients and controls, evaluating the impact of stopping CPAP for one night. Methods 11 men, aged 51–75 years (m = 65.6 years), compliant CPAP users, treated for 1–19 years (m = 7.8 years) wore Cambridge Neurotechnology Ltd actiwatches for one night while using CPAP and for one night sleeping without CPAP. A control group of 11 healthy men, aged 63–74 years (m = 64.1 years) slept normally whilst wearing an actiwatch. Subsequent daytime sleepiness was recorded using Karolinska sleepiness scores (KSS). Results Actimetry showed no significant differences between actual sleep time, sleep efficiency, sleep disturbance index or number of wake bouts when comparing OSA participants using CPAP, with controls; there was no difference in subsequent daytime sleepiness, control KSS = 4.21, OSA KSS = 4.17. Without CPAP there was no significant difference in sleep length or sleep onset latency compared with using CPAP, but there was a significant impact on sleep quality as shown by: increased sleep disturbance index from 7.9 to 13.8 [t(10) = 3.510, P < 0.05], decreased percent of actual sleep from 92.05% to 86.15% [t(10) = 3.51, P < 0.05], decreased sleep efficiency from 86.6% to 81% [t(10) = 2.204, P < 0.05] and increased number of wake bouts from 29 to 42.5 [t(10) = 3.877, P < 0.05]. Daytime sleepiness became significantly worse increasing from KSS 4.17 to 6.27 [t(10) = )4.96, P < 0.05]. Conclusion There was no disparity in sleep quality or KSS scores between CPAP treated OSA patients and healthy controls of a similar age. Treated OSA patients obtained quality sleep with no elevated day time sleepiness. However, cessation of treatment for one night caused sleep quality to deteriorate despite a comparable sleep time; the deterioration in sleep quality could explain the increase in daytime sleepiness. OSA patients need to know that even short-term noncompliance with CPAP treatment significantly impairs sleep quality, leading to excessive sleepiness during monotonous tasks such as driving. Actigraphy successfully identified nights of non-compliance in treated OSA patients; but did not differentiate between the sleep of CPAP treated OSA patients and healthy controls.
Resumo:
The mechanisms leading to colonization of metastatic breast cancer cells (BCa) in the skeleton are still not fully understood. Here, we demonstrate that mineralized extracellular matrices secreted by primary human osteoblasts (hOBM) modulate cellular processes associated with BCa colonization of bone. A panel of four BCa cell lines of different bone-metastatic potential (T47D, SUM1315, MDA-MB-231, and the bone-seeking subline MDA-MB-231BO) was cultured on hOBM. After 3 days, the metastatic BCa cells had undergone morphological changes on hOBM and were aligned along the hOBM's collagen type I fibrils that were decorated with bone-specific proteins. In contrast, nonmetastatic BCa cells showed a random orientation on hOBM. Atomic force microscopy-based single-cell force spectroscopy revealed that the metastatic cell lines adhered more strongly to hOBM compared with nonmetastatic cells. Function-blocking experiments indicated that β1-integrins mediated cell adhesion to hOBM. In addition, metastatic BCa cells migrated directionally and invaded hOBM, which was accompanied by enhanced MMP-2 and -9 secretion. Furthermore, we observed gene expression changes associated with osteomimickry in BCa cultured on hOBM. As such, osteopontin mRNA levels were significantly increased in SUM1315 and MDA-MB-231BO cells in a β1-integrin-dependent manner after growing for 3 days on hOBM compared with tissue culture plastic. In conclusion, our results show that extracellular matrices derived from human osteoblasts represent a powerful experimental platform to dissect mechanisms underlying critical steps in the development of bone metastases.
Resumo:
Background L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. Methods We examined LAT3 protein expression in human prostate cancer tissue microarrays. LAT function was inhibited using a leucine analog (BCH) in androgen-dependent and -independent environments, with gene expression analyzed by microarray. A PC-3 xenograft mouse model was used to study the effects of inhibiting LAT1 and LAT3 expression. Results were analyzed with the Mann-Whitney U or Fisher exact tests. All statistical tests were two-sided. Results LAT3 protein was expressed at all stages of prostate cancer, with a statistically significant decrease in expression after 4–7 months of neoadjuvant hormone therapy (4–7 month mean = 1.571; 95% confidence interval = 1.155 to 1.987 vs 0 month = 2.098; 95% confidence interval = 1.962 to 2.235; P = .0187). Inhibition of LAT function led to activating transcription factor 4–mediated upregulation of amino acid transporters including ASCT1, ASCT2, and 4F2hc, all of which were also regulated via the androgen receptor. LAT inhibition suppressed M-phase cell cycle genes regulated by E2F family transcription factors including critical castration-resistant prostate cancer regulatory genes UBE2C, CDC20, and CDK1. In silico analysis of BCH-downregulated genes showed that 90.9% are statistically significantly upregulated in metastatic castration-resistant prostate cancer. Finally, LAT1 or LAT3 knockdown in xenografts inhibited tumor growth, cell cycle progression, and spontaneous metastasis in vivo. Conclusion Inhibition of LAT transporters may provide a novel therapeutic target in metastatic castration-resistant prostate cancer, via suppression of mammalian target of rapamycin complex 1 activity and M-phase cell cycle genes.
Resumo:
Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.