364 resultados para threshold learning outcomes for bachelor of laws


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project began in 2013, with the award of an internal QUT Teaching and Learning grant. The task we wished to undertake was to document and better understand the role of studio teaching practice in the Creative Industries Faculty. While it was well understood that the Faculty had long used studio pedagogies as a key part of its teaching approach, organizational and other changes made it productive and timely to consider how the various study areas within the Faculty were approaching studio teaching. Chief among these changes were innovations in the use of technology in teaching, and at an organizational level the merging of what were once two schools within different faculties into a newly-structured Creative Industries Faculty. The new faculty consists of two schools, Media, Entertainment and Creative Art (MECA) and Design. We hoped to discover more about how studio techniques were developing alongside an ever-increasing number of options for content delivery, assessment, and interaction with students. And naturally we wanted to understand such developments across the broad range of nineteen study areas now part of the Creative Industries Faculty. This e-book represents the first part of our project, which in the main consisted in observing the teaching practices used in eight units across the Faculty, and then interviews with the unit coordinators involved. In choosing units, we opted for a broad opening definition of ‘studio’ to include not only traditional studios but also workshops and tutorials in which we could identify a component of studio teaching as enumerated by the Australian Learning and Teaching Council’s Studio Teaching Project: • A culture, a creative community created by a group of students and studio teachers working together for periods of time • A mode of teaching and learning where students and studio teachers interact in a creative and reflective process • A program of projects and activities where content is structured to enable ‘learning in action’ • A physical space or constructed environment in which the teaching and learning can take place (Source: http://www.studioteaching.org/?page=what_is_studio) The units we chose to observe, and which we hoped would represent something of the diversity of our study areas, were: • Dance Project 1 • Furniture Studies • Wearable Architecture • Fashion Design 4 • Industrial Design 6 • Advanced Writing Practice 3 • Introduction to Creative Writing • Studio Art Practice 2 Over the course of two semesters in 2013, we attended classes, presentations, and studio time in these units, and then conducted interviews that we felt would give further insight into both individual and discipline-specific approaches to studio pedagogies. We asked the same questions in each of the interviews: • Could you describe the main focus and aims of your unit? • How do you use studio time to achieve those aims? • Can you give us an example of the kind of activities you use in your studio teaching? • What does/do these example(s) achieve in terms of learning outcomes? • What, if any, is the role of technology in your studio teaching practice? • What do you consider distinctive about your approach to studio teaching, or the approach taken in your discipline area? The unit coordinators’ responses to these questions form some of the most interesting and valuable material in this book, and point to both consistencies in approach and teaching philosophies, as well as areas of difference. We believe that both can help to raise our critical awareness of studio teaching, and provide points of comparison for the future development of studio pedagogy in the Creative Industries. In each of the following pages, the interviews are placed alongside written descriptions of the units, their aims and outcomes, assessment models, and where possible photographs and video footage, as well as additional resources that may be useful to others engaged in studio teaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An initial call by the editors of International Research in Geographical and Environmental Education (IRGEE) prompted a study about the inclusion of geography in the Trends in International Mathematics and Science Study (TIMSS) tests. This study found that the geography education community were overwhelmingly in favour of such a move, believing that the information collected would be valuable in enhancing learning outcomes through its impact on research, policy and teaching practice (Lane & Bourke, 2016). However, a number of questions about the development and implementation of this assessment were posed. This paper addresses two of these questions: (1) What is the global geographical education community’s views about Grades 4 and 8 as target year levels for the assessment?; and, (2) What types of knowledge and cognitive dimensions would they like to see assessed? Based on these findings, the overarching key question that requires further discussion is: Can there be some degree of consensus in terms of what should be assessed and how the test should be implemented?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While there is evidence that science and non-science background students display small differences in performance in basic and clinical sciences, early in a 4-year, graduate entry medical program, this lessens with time. With respect to anatomy knowledge, there are no comparable data as to the impact previous anatomy experience has on the student perception of the anatomy practical learning environment. A study survey was designed to evaluate student perception of the anatomy practical program and its impact on student learning, for the initial cohort of a new medical school. The survey comprised 19 statements requiring a response using a 5-point Likert scale, in addition to a free text opportunity to provide opinion of the perceived educational value of the anatomy practical program. The response rate for a total cohort of 82 students was 89%. The anatomy practical program was highly valued by the students in aiding their learning of anatomy, as indicated by the high mean scores for all statements (range: 4.04-4.7). There was a significant difference between the students who had and had not studied a science course prior to entering medicine, with respect to statements that addressed aspects of the course related to its structure, organization, variety of resources, linkage to problem-based learning cases, and fairness of assessment. Nonscience students were more positive compared to those who had studied science before (P levels ranging from 0.004 to 0.035). Students less experienced in anatomy were more challenged in prioritizing core curricular knowledge. © 2011 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In November 2012, Queensland University of Technology in Australia launched a giant interactive learning environment known as The Cube. This article reports a phenomenographic investigation into visitors’ different experiences of learning in The Cube. At present very little is known about people’s learning experience in spaces featuring large interactive screens. We observed many visitors to The Cube and interviewed 26 people. Our analysis identified critical variation across the visitors’ experience of learning in The Cube. The findings are discussed as the learning strategy (in terms of Absorption, Exploration, Isolation and Collaboration); and the content learned (in terms of Technology, Skills and Topics). Other findings presented here are dimensions of the learning strategy and the content learned, with differing perspectives on each dimension. These outcomes provide early insights into the potential of giant interactive environments to enhance learning approaches and guide the design of innovative learning spaces in higher education.