390 resultados para Villiers de l’Isle-Adam
Resumo:
Objective To develop a child victimization survey among a diverse group of child protection experts and examine the performance of the instrument through a set of international pilot studies. Methods The initial draft of the instrument was developed after input from scientists and practitioners representing 40 countries. Volunteers from the larger group of scientists participating in the Delphi review of the ICAST P and R reviewed the ICAST C by email in 2 rounds resulting in a final instrument. The ICAST C was then translated and back translated into six languages and field tested in four countries using a convenience sample of 571 children 12–17 years of age selected from schools and classrooms to which the investigators had easy access. Results The final ICAST C Home has 38 items and the ICAST C Institution has 44 items. These items serve as screeners and positive endorsements are followed by queries for frequency and perpetrator. Half of respondents were boys (49%). Endorsement for various forms of victimization ranged from 0 to 51%. Many children report violence exposure (51%), physical victimization (55%), psychological victimization (66%), sexual victimization (18%), and neglect in their homes (37%) in the last year. High rates of physical victimization (57%), psychological victimization (59%), and sexual victimization (22%) were also reported in schools in the last year. Internal consistency was moderate to high (alpha between .685 and .855) and missing data low (less than 1.5% for all but one item). Conclusions In pilot testing, the ICAST C identifies high rates of child victimization in all domains. Rates of missing data are low, and internal consistency is moderate to high. Pilot testing demonstrated the feasibility of using child self-report as one strategy to assess child victimization. Practice implications The ICAST C is a multi-national, multi-lingual, consensus-based survey instrument. It is available in six languages for international research to estimate child victimization. Assessing the prevalence of child victimization is critical in understanding the scope of the problem, setting national and local priorities, and garnering support for program and policy development aimed at child protection.
Resumo:
Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.
Resumo:
Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.
Resumo:
Chlamydia pneumoniae is a ubiquitous intracellular pathogen, first associated with human respiratory disease and subsequently detected in a range of mammals, amphibians, and reptiles. Here we report the draft genome sequence for strain B21 of C. pneumoniae, isolated from the endangered Australian marsupial the western barred bandicoot.
Resumo:
Chlamydia pneumoniae is an obligate intracellular bacterium implicated in a wide range of human diseases including atherosclerosis and Alzheimer's disease. Efforts to understand the relationships between C. pneumoniae detected in these diseases have been hindered by the availability of sequence data for non-respiratory strains. In this study, we sequenced the whole genomes for C. pneumoniae isolates from atherosclerosis and Alzheimer's disease, and compared these to previously published C. pneumoniae genomes. Phylogenetic analyses of these new C. pneumoniae strains indicate two sub-groups within human C. pneumoniae, and suggest that both recombination and mutation events have driven the evolution of human C. pneumoniae. Further fine-detailed analyses of these new C. pneumoniae sequences show several genetically variable loci. This suggests that similar strains of C. pneumoniae are found in the brain, lungs and cardiovascular system and that only minor genetic differences may contribute to the adaptation of particular strains in human disease.
Resumo:
This paper considers the transmission of volatility in global foreign exchange, equity and bond markets. Using a multivariate GARCH framework which includes measures of realised volatility as explanatory variables, significant volatility and news spillovers are found to occur on the same trading day between Japan, Europe, and the United States. All markets exhibit significant degrees of asymmetry in terms of the transmission of volatility associated with good and bad news. There are also strong links between diffusive volatilities in all three markets, whereas jumpactivity is only importantwithin the equitymarkets. The results of this paper deepen our understanding of how news and volatility are propagated through global financial markets.
Resumo:
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
Resumo:
Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies have identified 100 risk variants for prostate cancer, which can explain approximately 33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3' untranslated region of genes predicted to affect miRNA binding (miRSNP) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (P<2.3×10(-5)) with risk of prostate cancer, 10 of which were within 7 genes previously not mapped by GWAS studies. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele, whereas miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. SIGNIFICANCE Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk.
Resumo:
Genome-wide association studies have identified more than 80 risk variants for prostate cancer, mainly in European or Asian populations. The generalizability of these variants in other racial/ethnic populations needs to be understood before the loci can be used widely in risk modeling. In our study, we examined 82 previously reported risk variants in 4,853 prostate cancer cases and 4,678 controls of African ancestry. We performed association testing for each variant using logistic regression adjusted for age, study and global ancestry. Of the 82 known risk variants, 68 (83%) had effects that were directionally consistent in their association with prostate cancer risk and 30 (37%) were significantly associated with risk at p < 0.05, with the most statistically significant variants being rs116041037 (p = 3.7 × 10(-26) ) and rs6983561 (p = 1.1 × 10(-16) ) at 8q24, as well as rs7210100 (p = 5.4 × 10(-8) ) at 17q21. By exploring each locus in search of better markers, the number of variants that captured risk in men of African ancestry (p < 0.05) increased from 30 (37%) to 44 (54%). An aggregate score comprised of these 44 markers was strongly associated with prostate cancer risk [per-allele odds ratio (OR) = 1.12, p = 7.3 × 10(-98) ]. In summary, the consistent directions of effects for the vast majority of variants in men of African ancestry indicate common functional alleles that are shared across populations. Further exploration of these susceptibility loci is needed to identify the underlying biologically relevant variants to improve prostate cancer risk modeling in populations of African ancestry.
Resumo:
Study Design Retrospective review of prospectively collected data. Objectives To analyze intervertebral (IV) fusion after thoracoscopic anterior spinal fusion (TASF) and explore the relationship between fusion scores and key clinical variables. Summary of Background Information TASF provides comparable correction with some advantages over posterior approaches but reported mechanical complications, and their relationship to non-union and graft material is unclear. Similarly, the optimal combination of graft type and implant stiffness for effecting successful radiologic union remains undetermined. Methods A subset of patients from a large single-center series who had TASF for progressive scoliosis underwent low-dose computed tomographic scans 2 years after surgery. The IV fusion mass in the disc space was assessed using the 4-point Sucato scale, where 1 indicates <50% and 4 indicates 100% bony fusion of the disc space. The effects of rod diameter, rod material, graft type, fusion level, and mechanical complications on fusion scores were assessed. Results Forty-three patients with right thoracic major curves (mean age 14.9 years) participated in the study. Mean fusion scores for patient subgroups ranged from 1.0 (IV levels with rod fractures) to 2.2 (4.5-mm rod with allograft), with scores tending to decrease with increasing rod size and stiffness. Graft type (autograft vs. allograft) did not affect fusion scores. Fusion scores were highest in the middle levels of the rod construct (mean 2.52), dropping off by 20% to 30% toward the upper and lower extremities of the rod. IV levels where a rod fractured had lower overall mean fusion scores compared to levels without a fracture. Mean total Scoliosis Research Society (SRS) questionnaire scores were 98.9 from a possible total of 120, indicating a good level of patient satisfaction. Conclusions Results suggest that 100% radiologic fusion of the entire disc space is not necessary for successful clinical outcomes following thoracoscopic anterior selective thoracic fusion.
Resumo:
Study design Anterior and posterior vertebral body heights were measured from sequential MRI scans of adolescent idiopathic scoliosis (AIS) patients and healthy controls. Objective To measure changes in vertebral body height over time during scoliosis progression to assess how vertebral body height discrepancies change during growth. Summary of background data Relative anterior overgrowth has been proposed as a potential driver for AIS initiation and progression. This theory proposes that the anterior column grows faster, and the posterior column slower, in AIS patients when compared to healthy controls. There is disagreement in the literature as to whether the anterior vertebral body heights are proportionally greater than posterior vertebral body heights in AIS patients when compared to healthy controls. To some extent, these discrepancies may be attributed to methodological differences. Methods MRI scans of the major curve of 21 AIS patients (mean age 12.5 ± 1.4 years, mean Cobb 32.2 ± 12.8º) and between T4 and T12 of 21 healthy adolescents (mean age 12.1 ± 0.5 years) were captured for this study. Of the 21 AIS patients, 14 had a second scan on average 10.8 ± 4.7 months after the first. Anterior and posterior vertebral body heights were measured from the true sagittal plane of each vertebra such that anterior overgrowth could be quantified. Results The difference between anterior and posterior vertebral body height in healthy, non-scoliotic children was significantly greater than in AIS patients with mild to moderate scoliosis. However there was no significant relationship between the overall anterior-posterior vertebral body height difference in AIS and either severity of the curve or its progression over time. Conclusions Whilst AIS patients have a proportionally longer anterior column than non-scoliotic controls, the degree of anterior overgrowth was not related to the rate of progression or the severity of the scoliotic curve.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.
Resumo:
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient),D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculateDdirectly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant.
Resumo:
This chapter proposes that to capture expertise in field settings sport scientists should base experimental designs on an inter-disciplinary theoretical foundation and utilise coach and athlete expertise to identify the key variables upon which to focus. We propose that an ecological dynamics framework may allow motor learning and performance to be examined in a more representative manner. After initially considering the problem from the view of a “new” skill acquisition scientist, we provide an overview of previous approaches, before providing theoretical and practically driven ideas to guide sport scientists’ practice going forward.