610 resultados para Tumour cells
Resumo:
Most mathematical models of collective cell spreading make the standard assumption that the cell diffusivity and cell proliferation rate are constants that do not vary across the cell population. Here we present a combined experimental and mathematical modeling study which aims to investigate how differences in the cell diffusivity and cell proliferation rate amongst a population of cells can impact the collective behavior of the population. We present data from a three–dimensional transwell migration assay which suggests that the cell diffusivity of some groups of cells within the population can be as much as three times higher than the cell diffusivity of other groups of cells within the population. Using this information, we explore the consequences of explicitly representing this variability in a mathematical model of a scratch assay where we treat the total population of cells as two, possibly distinct, subpopulations. Our results show that when we make the standard assumption that all cells within the population behave identically we observe the formation of moving fronts of cells where both subpopulations are well–mixed and indistinguishable. In contrast, when we consider the same system where the two subpopulations are distinct, we observe a very different outcome where the spreading population becomes spatially organized with the more motile subpopulation dominating at the leading edge while the less motile subpopulation is practically absent from the leading edge. These modeling predictions are consistent with previous experimental observations and suggest that standard mathematical approaches, where we treat the cell diffusivity and cell proliferation rate as constants, might not be appropriate.
Resumo:
Platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) is an enzyme with angiogenic and cell motility properties. Moreover, it is involved in the transformation of fluoropyrimidines into active cytotoxic metabolites, In the present study, the expression of PD-ECGF in normal lung and lung cancer was immunohistochemically evaluated using the P-GF.44C monoclonal antibody. Alveolar and tumoural macrophages mere invariably stained and mere used as an internal control for assessment of the staining. Alveolar epithelium was always negative, whilst bronchiolar epithelium showed occasional positive reactivity. Normal lung and tumour endothelium was occasionally positive, Positive staining in more than 50 per cent of cells was observed in 23/71 squamous carcinomas (32 per cent), 16/38 (42 per cent) adenocarcinomas, and 2/6 (33 per cent) adenosquamous carcinomas. Differentiated areas and areas of squamous metaplasia mere more strongly positive than other tumour areas. All 22 small cell carcinomas and one carcinoid tumour were negative. The present study provides a baseline for future studies in non-small cell lung cancer to correlate PD-ECGF expression with tumour vascularization, prognosis, and response to chemotherapy.
Resumo:
Neo-angiogenesis during neoplastic growth involves endothelial mitogenic and migration stimuli produced by cancer or tumour stromal cells. Although this active angiogenesis takes place in the tumour periphery, the process of vessel growth and survival in inner areas and its clinical role remain largely unexplored. The present study compared the microvessel score (MS) as well as the single endothelial cell score (ECS) in the invading edge and in inner areas of non-small cell lung carcinomas (NSCLCs). Three different patterns of vascular growth were distinguished: the edvin (edge vs. inner) type 1, where a low MS was observed in both peripheral and inner tumour areas; the edvin type 2, where a high MS was noted in the invading front but a low MS in inner areas; and the edvin type 3, where both peripheral and inner tumour areas had a high MS. The ECS was high in the invading edge in edvin type 2 and 3 cases and was sharply decreased in both types in inner areas, suggesting that endothelial cell migration is unlikely to contribute to the angiogenic process in areas away from the tumour front. Expression of the vascular endothelial growth factor (VEGF) and of thymidine phosphorylase (TP) was associated with a high MS in the invading edge. VEGF was associated with a high MS in inner areas (edvin 3), while TP expression was associated with edvin type 2, showing that VEGF (and not TP) contributes to the preservation of the inner vasculature. Both edvin type 2 and 3 cases showed an increased incidence of node metastasis, but edvin type 3 cases had a poorer prognosis, even in the N1-stage group. The present study suggests that tumour factors regulating angiogenesis and vascular survival are not identical. A possible method is reported to quantify these two parameters by comparing the MS in the invading edge and inner areas (edvin types). This observation may contribute to the evaluation of the effectiveness of different therapeutic approaches, namely vascular targeting vs. anti-angiogenesis. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
To determine whether [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) could predict the pathological response in oesophageal cancer after only the first week of neoadjuvant chemoradiation. Thirty-two patients with localised oesophageal cancer had a pretreatment PET scan and a repeat after the first week of chemoradiation. The change in mean maximum standardised uptake value (SUV) and volume of metabolically active tissue (MTV) was compared with the tumour regression grade (TRG) in the final histology. Those who achieved a TRG of 1 and 2 were deemed responders and 3-5 nonresponders. In the responders (28%), the SUV fell from 12.6 (±6.3) to 8.1 (±2.9) after 1 week of chemoradiation (P = 0.070). In nonresponders (72%), the results were 9.7 (±5.4) and 7.1 (±3.8), respectively (P = 0.003). The MTV in responders fell from 36.6 (±22.7) to 22.3 (±10.4) cm3 (P = 0.180), while in nonresponders, this fell from 35.9 (±36.7) to 31.9 (±52.7) cm3 (P = 0.405). There were no significant differences between responders and nonresponders. The hypothesis that early repeat FDG-PET scanning may predict histomorphologic response was not proven. This may reflect an inflammatory effect of radiation that obscures tumour-specific metabolic changes at this time. This assessment may have limited application in predicting response to multimodal regimens for oesophageal cancer. © 2006 Cancer Research UK.
Resumo:
Background: Cyclooxygenase (COX)-2 is frequently overexpressed in non-small cell lung cancer (NSCLC) and results in increased levels of prostaglandin E2 (PGE 2), an important signalling molecule implicated in tumourigenesis. PGE 2 exerts its effects through the E prostanoid (EP) receptors (EPs1-4). Methods: The expression and epigenetic regulation of the EPs were evaluated in a series of resected fresh frozen NSCLC tumours and cell lines. Results: EP expression was dysregulated in NSCLC being up and downregulated compared to matched control samples. For EPs1, 3 and 4 no discernible pattern emerged. EP2 mRNA however was frequently downregulated, with low levels being observed in 13/20 samples as compared to upregulation in 5/20 samples examined. In NSCLC cell lines DNA CpG methylation was found to be important for the regulation of EP3 expression, the demethylating agent decitabine upregulating expression. Histone acetylation was also found to be a critical regulator of EP expression, with the histone deacteylase inhibitors trichostatin A, phenylbutyrate and suberoylanilide hydroxamic acid inducing increased expression of EPs2-4. Direct chromatin remodelling was demonstrated at the promoters for EPs2-4. Conclusions: These results indicate that EP expression is variably altered from tumour to tumour in NSCLC. EP2 expression appears to be predominantly downregulated and may have an important role in the pathogenesis of the disease. Epigenetic regulation of the EPs may be central to the precise role COX-2 may play in the evolution of individual tumours. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
Recent studies have demonstrated that angiogenesis and suppressed cell- mediated immunity (CMI) play a central role in the pathogenesis of malignant disease facilitating tumour growth, invasion and metastasis. In the majority of tumours, the malignant process is preceded by a pathological condition or exposure to an irritant which itself is associated with the induction of angiogenesis and/or suppressed CMI. These include: cigarette smoking, chronic bronchitis and lung cancer; chronic oesophagitis and oesophageal cancer; chronic viral infections such as human papilloma virus and ano-genital cancers, chronic hepatitis B and C and hepatocellular carcinoma, and Epstein- Barr virus (EBV) and lymphomas; chronic inflammatory conditions such as Crohn's disease and ulcerative colitis and colorectal cancer; asbestos exposure and mesothelioma and excessive sunlight exposure/sunburn and malignant melanoma. Chronic exposure to growth factors (insulin-like growth factor-I in acromegaly), mutations in tumour suppressor genes (TP53 in Li Fraumeni syndrome) and long-term exposure to immunosuppressive agents (cyclosporin A) may also give rise to similar environments and are associated with the development of a range of solid tumours. The increased blood supply would facilitate the development and proliferation of an abnormal clone or clones of cells arising as the result of: (a) an inherited genetic abnormality; and/or (b) acquired somatic mutations, the latter due to local production and/or enhanced delivery of carcinogens and mutagenic growth factors. With progressive detrimental mutations and growth-induced tumour hypoxia, the transformed cell, to a lesser or greater extent, may amplify the angiogenic process and CMI suppression, thereby facilitating further tumour growth and metastasis. There is accumulating evidence that long-term treatment with cyclo-oxygenase inhibitors (aspirin and indomethacin), cytokines such as interferon-α, anti-oestrogens (tamoxifen and raloxifene) and captopril significantly reduces the incidence of solid tumours such as breast and colorectal cancer. These agents are anti-angiogenic and, in the case of aspirin, indomethacin and interferon-α have proven immunomodulatory effects. Collectively these observations indicate that angiogenesis and suppressed CMI play a central role in the development and progression of malignant disease. (C) 2000 Elsevier Science Ltd.
Resumo:
Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.
Resumo:
Both cyclooxygenase (COX)-2 and epidermal growth factor receptor (EGFR) are thought to play important roles in the pathogenesis of non-small cell lung cancer (NSCLC). A number of in vitro studies have postulated a link between EGFR activation and subsequent COX-2 upregulation. The relationship between these factors has not been established in patients with NSCLC. COX-2 and EGFR expression were studied in 172 NSCLC specimens using standard immunohistochemical techniques. Western blotting was used to determine COX-2 and EGFR levels in five NSCLC cell lines. The effect of treatment with EGF on COX-2 expression in A549 cells was assessed. Results: Both EGFR and COX-2 are overexpressed in NSCLC. The predominant pattern of COX-2 and EGFR staining was cytoplasmic. Membranous EGFR staining was seen in 23.3% of cases. There was no relationship between COX-2 and EGFR expression and survival or any clinicopathological features. No correlation was seen between EGFR expression and COX-2 expression in the immunohistochemical series or in the cell lines. Treatment with EGF did not upregulate COX-2 levels in A549 cells, either in serum free or serum-supplemented conditions. Conclusions: Although COX-2 and EGFR are over-expressed in NSCLC neither was of prognostic significance in this series of cases. There is no correlation between these two factors in either tumour samples or cell lines. Although these factors show no correlation in NSCLC, they remain potential, though independent targets for treatment. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Actin is the most abundantly distributed protein in living cells which plays critical roles in the cell interior force generation and transmission. The fracture mechanism of microfilament networks, whose principle component is actin, would provide insights which can contribute to the understandings of self-protective characters of cytoskeleton. In this study, molecular simulations are conducted to investigate the molecular mechanisms of disruption of microfilament networks from the viewpoint of biophysics. By employing a coarse-grained (CG) model of actin filament networks, we focused on the ultimate strength and crack growth mode of microfilament networks that have dependency on the crack length. It can be found that, the fracture mechanism of microfilament network has dependency on the structural properties of microfilament networks. The structure flaws marginally change the strength of microfilament networks which would explain the self-protective characters of cytoskeleton.
Resumo:
Autologous bone marrow-derived mesenchymal stem cell (BMSCs)-based therapies show great potential in regenerative medicine. However, long-term storage and preservation of BMSCs for clinical use is still a great clinical challenge. The present study aimed to analyze the effect of long-term cryopreservation on the regenerative ability of BMSCs. After cryopreservation of BMSCs from beagle dogs for three years, cell viability, and quantitative analysis of alkaline phosphatase (ALP) activity, surface adherence, and mineralized nodule formation were analyzed. BMSCs in cell-scaffold complex were then implanted into nude mice. There was no significant difference in cell viability and ALP activity between osteogenic differentiation and non-osteogenic differentiation of BMSCs, and BMSCs in cell-scaffold complex retained osteogenic differentiation ability in vivo. These results indicate that long-term cryopreserved BMSCs maintain their have capacity to contribute to regeneration.
Resumo:
Purpose: Although oral fluoropyrimidine pro-drugs are increasingly being administered in preference to intravenous nucleoside analogues in cancer chemotherapy, their activation in malignant liver tissue may be insufficient. OGT 719 (1-galactopyranosyl-5-fluorouracil) is a novel nucleoside analogue, preferentially localized in hepatocytes and hepatoma cells via the asialoglycoprotein receptor. The aim of this study was to assess the systemic bioavailability of this rationally designed drug in 16 patients with advanced solid cancers. Method: Crossover pharmacokinetic study of oral (400 or 800 mg) and intravenous (250 mg/m 2) OGT 719. Results: Linear pharmacokinetics and oral bioavailability of approximately 25% were observed at the dose levels used in this study. Like other 5-FU prodrugs, considerable interpatient variability was observed in bioavailability following oral dosing. The mean half-life for oral doses was 4 h. OGT 719 was well tolerated. No objective tumour responses were demonstrated. Conclusion: The systemic bioavailability and half-life of oral OGT 719 are sufficient to merit dose escalation studies with frequent daily dosing. Subsequent efficacy studies should be performed in patients with primary and secondary liver malignancies.
Resumo:
Purpose: Although oral fluoropyrimidine pro-drugs are increasingly being administered in preference to intravenous nucleoside analogues in cancer chemotherapy, their activation in malignant liver tissue may be insufficient. OGT 719 (1-galactopyranosyl-5-fluorouracil) is a novel nucleoside analogue, preferentially localized in hepatocytes and hepatoma cells via the asialoglycoprotein receptor. The aim of this study was to assess the systemic bioavailability of this rationally designed drug in 16 patients with advanced solid cancers. Method: Crossover pharmacokinetic study of oral (400 or 800 mg) and intravenous (250 mg/m 2) OGT 719. Results: Linear pharmacokinetics and oral bioavailability of approximately 25% were observed at the dose levels used in this study. Like other 5-FU prodrugs, considerable interpatient variability was observed in bioavailability following oral dosing. The mean half-life for oral doses was 4 h. OGT 719 was well tolerated. No objective tumour responses were demonstrated. Conclusion: The systemic bioavailability and half-life of oral OGT 719 are sufficient to merit dose escalation studies with frequent daily dosing. Subsequent efficacy studies should be performed in patients with primary and secondary liver malignancies.
Resumo:
We hypothesized that normal human mesothelial cells acquire resistance to asbestos-induced toxicity via induction of one or more epidermal growth factor receptor (EGFR) - linked survival pathways (phosphoinositol-3-kinase/AKT/ mammalian target of rapamycin and extracellular signal - regulated kinase [ERK] 1/2) during simian virus 40 (SV40) transformation and carcinogenesis. Both isolated HKNM-2 mesothelial cells and a telomerase-immortalized mesothelial line (LP9/TERT-1) were more sensitive to crocidolite asbestos toxicity than an SV40 Tag-immortalized mesothelial line (MET5A) and malignant mesothelioma cell lines (HMESO and PPM Mill). Whereas increases in phosphorylation of AKT (pAKT) were observed in MET5A cells in response to asbestos, LP9/TERT-1 cells exhibited dose-related decreases in pAKT levels. Pretreatment with an EGFR phosphorylation or mitogen-activated protein kinase kinase 1/2 inhibitor abrogated asbestos-induced phosphorylated ERK (pERK) 1/2 levels in both LP9/TERT-1 and MET5A cells as well as increases in pAKT levels in MET5A cells. Transient transfection of small interfering RNAs targeting ERK1, ERK2, or AKT revealed that ERK1/2 pathways were involved in cell death by asbestos in both cell lines. Asbestos-resistant HMESO or PPM Mill cells with high endogenous levels of ERKs or AKT did not show dose-responsive increases in pERK1/ERK1, pERK2/ERK2, or pAKT/AKT levels by asbestos. However, small hairpin ERK2 stable cell lines created from both malignant mesothelioma lines were more sensitive to asbestos toxicity than shERK1 and shControl lines, and exhibited unique, tumor-specific changes in endogenous cell death - related gene expression. Our results suggest that EGFR phosphorylation is causally linkedto pERK and pAKT activation by asbestos in normal and SV40 Tag - immortalized human mesothelial cells. They also indicate that ERK2 plays a role in modulating asbestos toxicity by regulating genes critical to cell injury and survival that are differentially expressed in human mesotheliomas.