460 resultados para Surface coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Woods Bagot 2007 refurbishment of the Qantas and British Airways Bangkok Business lounge in the Survarnabhumi Airport features wall finishes designed by wallpaper designer, Florence Broadhurst (1899-1977) and Thai Silk trader, Jim Thompson (1906-1967). This distinctive selection, which is proclaimed on the airport’s website, of patterned wall surfaces side by side draws attention to their striking similarities and their defining differences . Thompson and Broadhurst would appear to be worlds apart, but here in the airport their work brings them together. Thompson, the son of a wealthy cotton family in America, worked as an architect before joining the army. He moved to Bangkok to start The Thai Silk Company in 1948. Broadhurst was born on a farm in Mt. Perry, Queensland. She began her career as a performance artist, as part of an Australian troupe in Shanghai, moving onto pursue a career in fashion design, catering to the middle and upper classes in London. Upon her return to Australia, Broadhurst started a print design company in 1959. Both Broadhurst and Thompson pursued multiple careers, lived many lives, and died under mysterious circumstances. Broadhurst was murdered in 1977 at her Sydney print warehouse, which remains an unsolved crime. Thompson disappeared in Malaysia in 1967 and his body has never been found. This chapter investigates the parallels between Thompson and Broadhurst and what lead them to design such popular patterns for wall surfaces towards the end of their careers. While neither designer was a household name, their work is familiar to most, seen in the costume and set design of films, on the walls of restaurants and cafes and even in family homes. The reason for the popularity of their patterns has not previously been analysed. However, this chapter suggests that the patterns are intriguing because they contain something of their designers’ identities. It suggests that the coloured surface provides a way of camouflaging and hiding its subjects’ histories, such that Broadhurst and Thompson, consciously or unconsciously, used the patterned surface as a plane in which their past lives could be buried. The revealing nature of the stark white wall, compared with the forgiveness provided by the pattern in which to hide, is elaborated by painter and advocate for polychromatic architecture, Fernand Léger in his essay, “The Wall, The Architect, The Painter (1965).” Léger writes that, “the modern architect has gone too far in his magnificent attempts to cleanse through emptiness,” and that the resultant white walls of modernity create ‘an impalpability of air, of slick, brilliant new surfaces where nothing can be hidden any longer …even shadows don’t dare to enter’. To counter the exposure produced by the white wall, Thompson and Broadhurst designed patterned surfaces that could harbour their personal histories. Broadhurst and Thompson’s works share a number of commonalities in their design production, even though their work in print design commenced a decade apart. Both designers opted to work more with traditional methods of pattern making. Broadhurst used hand-operated screens, and Thompson outsourced work to local weavers and refrained from operating out of a factory. Despite humble beginnings, Broadhurst and Thompson enjoyed international success with their wall patterns being featured in a number of renowned international hotels in Bahrain, Singapore, Sydney, and London in the 1970s and 1980s. Their patterns were also transferred to fabric for soft furnishings and clothing. Thompson’s patterns were used for costumes in films including the King and I and Ben Hur. Broadhurst’s patterns were also widely used by fashion designers and artists, such as Akira Isogowa‘s costume design for Salome, a 1998 production by the Sydney Dance Company. Most recently her print designs have been used by skin illustrator Emma Hack, in a series of works painting female bodies into Broadhurst’s patterns. Hack’s works camouflage the models’ bodies into the patterned surface, assimilating subject and surface, hinting at there being something living within the patterned wall. More than four decades after Broadhurst’s murder and five decades since Thompson’s disappearance, their print designs persist as more than just a legacy. They are applied as surface finishes with the same fervour as when the designs were first released. This chapter argues that the reason for the ongoing celebration of their work is that there is the impalpable presence of the creator in the patterns. It suggests that the patterns blur the boundary between subject and surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin plate spline finite element methods are used to fit a surface to an irregularly scattered dataset [S. Roberts, M. Hegland, and I. Altas. Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions. SIAM, 1:208--234, 2003]. The computational bottleneck for this algorithm is the solution of large, ill-conditioned systems of linear equations at each step of a generalised cross validation algorithm. Preconditioning techniques are investigated to accelerate the convergence of the solution of these systems using Krylov subspace methods. The preconditioners under consideration are block diagonal, block triangular and constraint preconditioners [M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer., 14:1--137, 2005]. The effectiveness of each of these preconditioners is examined on a sample dataset taken from a known surface. From our numerical investigation, constraint preconditioners appear to provide improved convergence for this surface fitting problem compared to block preconditioners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of cubic silicon carbide (3C-SiC) hetero-epitaxial films grown on the (111) surface of silicon is a promising template for the subsequent epitaxial growth of III-V semiconductor layers and graphene. We investigate growth and post-growth approaches for controlling the surface roughness of epitaxial SiC to produce an optimal template. We first explore 3C-SiC growth on various degrees of offcut Si(111) substrates, although we observe that the SiC roughness tends to worsen as the degree of offcut increases. Hence we focus on post-growth approaches available on full wafers, comparing chemical mechanical polishing (CMP) and a novel plasma smoothening process. The CMP leads to a dramatic improvement, bringing the SiC surface roughness down to sub-nanometer level, though removing about 200 nm of the SiC layer. On the other hand, our proposed HCl plasma process appears very effective in smoothening selectively the sharpest surface topography, leading up to 30% improvement in SiC roughness with only about 50 nm thickness loss. We propose a simple physical model explaining the action of the plasma smoothening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of CdS nanoparticles incorporated onto mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm when SILAR cycles were fewer than 9. Quantum size effect was found with the CdS sensitized TiO2 films prepared with up to 9 SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 eV to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO2 films in air under illumination (440.6 µW/cm2) showed that the photodegradation rate was up to 85% per day for the sample prepared with 3 SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO4). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular Dynamics (MD) simulation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS11, particle size = 5.6 nm) accounts for 9.6% of the material whereas this value is increased to 19.2% for (CdS3) based smaller particles (particle size: 2.7 nm). Nevertheless, CdS nanoparticles coated with ZnS material showed a significantly enhanced stability under illumination in air. A nearly 100% protection of CdS from photon induced oxidation with a ZnS coating layer prepared using four SILAR cycles, suggesting the formation of a nearly complete coating layer on the CdS nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced catalytic performance of zeoltes via the plasmonic effect of gold nanoparticles has been discovered to be closely correlated with the molecular polarity of reactants. The intensified polarised electrostatic field of Na+ in NaY plays a critical role in stretching the C=O bond of aldehydes to improve the reaction rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b 5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Nanostructured TiO2 electrodes are employed to probe the electron-transfer process of cytochrome b5 by surface-enhanced resonance Raman spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, the enhancement factor increases, which can be attributed to the electric field enhancement. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b5, whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.