534 resultados para Stereo image processing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our everyday environment is full of text but this rich source of information remains largely inaccessible to mobile robots. In this paper we describe an active text spotting system that uses a small number of wide angle views to locate putative text in the environment and then foveates and zooms onto that text in order to improve the reliability of text recognition. We present extensive experimental results obtained with a pan/tilt/zoom camera and a ROS-based mobile robot operating in an indoor environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. In recent years, sparse representation based classification(SRC) has received much attention in face recognition with multipletraining samples of each subject. However, it cannot be easily applied toa recognition task with insufficient training samples under uncontrolledenvironments. On the other hand, cohort normalization, as a way of mea-suring the degradation effect under challenging environments in relationto a pool of cohort samples, has been widely used in the area of biometricauthentication. In this paper, for the first time, we introduce cohort nor-malization to SRC-based face recognition with insufficient training sam-ples. Specifically, a user-specific cohort set is selected to normalize theraw residual, which is obtained from comparing the test sample with itssparse representations corresponding to the gallery subject, using poly-nomial regression. Experimental results on AR and FERET databases show that cohort normalization can bring SRC much robustness against various forms of degradation factors for undersampled face recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report describes the available functionality and use of the ClusterEval evaluation software. It implements novel and standard measures for the evaluation of cluster quality. This software has been used at the INEX XML Mining track and in the MediaEval Social Event Detection task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iris based identity verification is highly reliable but it can also be subject to attacks. Pupil dilation or constriction stimulated by the application of drugs are examples of sample presentation security attacks which can lead to higher false rejection rates. Suspects on a watch list can potentially circumvent the iris based system using such methods. This paper investigates a new approach using multiple parts of the iris (instances) and multiple iris samples in a sequential decision fusion framework that can yield robust performance. Results are presented and compared with the standard full iris based approach for a number of iris degradations. An advantage of the proposed fusion scheme is that the trade-off between detection errors can be controlled by setting parameters such as the number of instances and the number of samples used in the system. The system can then be operated to match security threat levels. It is shown that for optimal values of these parameters, the fused system also has a lower total error rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Electronic Portal Imaging Devices (EPIDs) are available with most linear accelerators (Amonuk, 2002), the current technology being amorphous silicon flat panel imagers. EPIDs are currently used routinely in patient positioning before radiotherapy treatments. There has been an increasing interest in using EPID technology tor dosimetric verification of radiotherapy treatments (van Elmpt, 2008). A straightforward technique involves the EPID panel being used to measure the fluence exiting the patient during a treatment which is then compared to a prediction of the fluence based on the treatment plan. However, there are a number of significant limitations which exist in this Method: Resulting in a limited proliferation ot this technique in a clinical environment. In this paper, we aim to present a technique of simulating IMRT fields using Monte Carlo to predict the dose in an EPID which can then be compared to the measured dose in the EPID. Materials: Measurements were made using an iView GT flat panel a-SI EPfD mounted on an Elekta Synergy linear accelerator. The images from the EPID were acquired using the XIS software (Heimann Imaging Systems). Monte Carlo simulations were performed using the BEAMnrc and DOSXVZnrc user codes. The IMRT fieids to be delivered were taken from the treatment planning system in DICOMRT format and converted into BEAMnrc and DOSXYZnrc input files using an in-house application (Crowe, 2009). Additionally. all image processing and analysis was performed using another in-house application written using the Interactive Data Language (IDL) (In Visual Information Systems). Comparison between the measured and Monte Carlo EPID images was performed using a gamma analysis (Low, 1998) incorporating dose and distance to agreement criteria. Results: The fluence maps recorded by the EPID were found to provide good agreement between measured and simulated data. Figure 1 shows an example of measured and simulated IMRT dose images and profiles in the x and y directions. "A technique for the quantitative evaluation of dose distributions", Med Phys, 25(5) May 1998 S. Crowe, 1. Kairn, A. Fielding, "The Development of a Monte Carlo system to verify Radiotherapy treatment dose calculations", Radiotherapy & Oncology, Volume 92, Supplement 1, August 2009, Pages S71-S71.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a method to generate a large scale and accurate dense 3D semantic map of street scenes. A dense 3D semantic model of the environment can significantly improve a number of robotic applications such as autonomous driving, navigation or localisation. Instead of using offline trained classifiers for semantic segmentation, our approach employs a data-driven, nonparametric method to parse scenes which easily scale to a large environment and generalise to different scenes. We use stereo image pairs collected from cameras mounted on a moving car to produce dense depth maps which are combined into a global 3D reconstruction using camera poses from stereo visual odometry. Simultaneously, 2D automatic semantic segmentation using a nonparametric scene parsing method is fused into the 3D model. Furthermore, the resultant 3D semantic model is improved with the consideration of moving objects in the scene. We demonstrate our method on the publicly available KITTI dataset and evaluate the performance against manually generated ground truth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work described in this technical report is part of an ongoing project at QUT to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the algorithm we use to cluster the spectra in a spectrogram. The report begins with a brief description of the signal processing that prepares the spectrograms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.