415 resultados para Single unit
Resumo:
The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 to 0.27 eV when 4e– are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T′ phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T′-MoS2 structure shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T′-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2 and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.
Resumo:
Background and Purpose Randomized trials have demonstrated reduced morbidity and mortality with stroke unit care; however, the effect on length of stay, and hence the economic benefit, is less well-defined. In 2001, a multidisciplinary stroke unit was opened at our institution. We observed whether a stroke unit reduces length of stay and in-hospital case fatality when compared to admission to a general neurology/medical ward. Methods A retrospective study of 2 cohorts in the Foothills Medical Center in Calgary was conducted using administrative databases. We compared a cohort of stroke patients managed on general neurology/medical wards before 2001, with a similar cohort of stroke patients managed on a stroke unit after 2003. The length of stay was dichotomized after being centered to 7 days and the Charlson Index was dichotomized for analysis. Multivariable logistic regression was used to compare the length of stay and case fatality in 2 cohorts, adjusted for age, gender, and patient comorbid conditions defined by the Charlson Index. Results Average length of stay for patients on a stroke unit (n=2461) was 15 days vs 19 days for patients managed on general neurology/medical wards (n=1567). The proportion of patients with length of stay >7 days on general neurology/medical wards was 53.8% vs 44.4% on the stroke unit (difference 9.4%; P<0.0001). The adjusted odds of a length of stay >7 days was reduced by 30% (P<0.0001) on a stroke unit compared to general neurology/medical wards. Overall in-hospital case fatality was reduced by 4.5% with stroke unit care. Conclusions We observed a reduced length of stay and reduced in-hospital case-fatality in a stroke unit compared to general neurology/medical wards.
Resumo:
Background and purpose There are no published studies on the parameterisation and reliability of the single-leg stance (SLS) test with inertial sensors in stroke patients. Purpose: to analyse the reliability (intra-observer/inter-observer) and sensitivity of inertial sensors used for the SLS test in stroke patients. Secondary objective: to compare the records of the two inertial sensors (trunk and lumbar) to detect any significant differences in the kinematic data obtained in the SLS test. Methods Design: cross-sectional study. While performing the SLS test, two inertial sensors were placed at lumbar (L5-S1) and trunk regions (T7–T8). Setting: Laboratory of Biomechanics (Health Science Faculty - University of Málaga). Participants: Four chronic stroke survivors (over 65 yrs old). Measurement: displacement and velocity, Rotation (X-axis), Flexion/Extension (Y-axis), Inclination (Z-axis); Resultant displacement and velocity (V): RV=(Vx2+Vy2+Vz2)−−−−−−−−−−−−−−−−−√ Along with SLS kinematic variables, descriptive analyses, differences between sensors locations and intra-observer and inter-observer reliability were also calculated. Results Differences between the sensors were significant only for left inclination velocity (p = 0.036) and extension displacement in the non-affected leg with eyes open (p = 0.038). Intra-observer reliability of the trunk sensor ranged from 0.889-0.921 for the displacement and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor was between 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-observer reliability of the trunk sensor was between 0.878-0.917 for the displacement and 0.847-0.884 for velocity. Inter-observer reliability of the lumbar sensor ranged from 0.870-0.940 for the displacement and 0.863-0.884 for velocity. Conclusion There were no significant differences between the kinematic records made by an inertial sensor during the development of the SLS testing between two inertial sensors placed in the lumbar and thoracic regions. In addition, inertial sensors. Have the potential to be reliable, valid and sensitive instruments for kinematic measurements during SLS testing but further research is needed.
Resumo:
This paper presents an uncertainty quantification study of the performance analysis of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multi-purpose Small Power Unit. A deterministic 3D volume-averaged Computational Fluid Dynamics (CFD) solver is coupled with a non-statistical generalized Polynomial Chaos (gPC) representation based on a pseudo-spectral projection method. One of the advantages of this approach is that it does not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic and geometric fields. The stochastic results highlight the importance of the blade thickness and trailing edge tip radius on the total-to-static efficiency of the turbine compared to the angular velocity and trailing edge tip length. From a theoretical point of view, the use of the gPC representation on an arbitrary grid also allows the investigation of the sensitivity of the blade thickness profiles on the turbine efficiency. The gPC approach is also applied to coupled random parameters. The results show that the most influential coupled random variables are trailing edge tip radius coupled with the angular velocity.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
Background Anaemia is common in critically ill patients, and has a significant negative impact on patients' recovery. Blood conservation strategies have been developed to reduce the incidence of iatrogenic anaemic caused by sampling for diagnostic testing. Objectives Describe practice and local guidelines in adult, paediatric and neonatal Australian intensive care units (ICUs) regarding blood sampling and conservation strategies. Methods Cross-sectional descriptive study, conducted July 2013 over one week in single adult, paediatric and neonatal ICUs in Brisbane. Data were collected on diagnostic blood samples obtained during the study period, including demographic and acuity data of patients. Institutional blood conservation practice and guidelines were compared against seven evidence-based recommendations. Results A total of 940 blood sampling episodes from 96 patients were examined across three sites. Arterial blood gas was the predominant reason for blood sampling in each unit, accounting for 82% of adult, 80% of paediatric and 47% of neonatal samples taken (p <. 0.001). Adult patients had significantly more median [IQR] samples per day in comparison to paediatrics and neonates (adults 5.0 [2.4]; paediatrics 2.3 [2.9]; neonatal 0.7 [2.7]), which significantly increased median [IQR] blood sampling costs per day (adults AUD$101.11 [54.71]; paediatrics AUD$41.55 [56.74]; neonatal AUD$8.13 [14.95]; p <. 0.001). The total volume of samples per day (median [IQR]) was also highest in adults (adults 22.3. mL [16.8]; paediatrics 5.0. mL [1.0]; neonates 0.16. mL [0.4]). There was little information about blood conservation strategies in the local clinical practice guidelines, with the adult and neonatal sites including none of the seven recommendations. Conclusions There was significant variation in blood sampling practice and conservation strategies between critical care settings. This has implications not only for anaemia but also infection control and healthcare costs.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Single nucleotide polymorphisms (SNPs) are widely acknowledged as the marker of choice for many genetic and genomic applications because they show co-dominant inheritance, are highly abundant across genomes and are suitable for high-throughput genotyping. Here we evaluated the applicability of SNP markers developed from Crassostrea gigas and C. virginica expressed sequence tags (ESTs) in closely related Crassostrea and Ostrea species. A total of 213 putative interspecific level SNPs were identified from re-sequencing data in six amplicons, yielding on average of one interspecific level SNP per seven bp. High polymorphism levels were observed and the high success rate of transferability show that genic EST-derived SNP markers provide an efficient method for rapid marker development and SNP discovery in closely related oyster species. The six EST-SNP markers identified here will provide useful molecular tools for addressing questions in molecular ecology and evolution studies including for stock analysis (pedigree monitoring) in related oyster taxa.
Resumo:
Capstone units in higher education courses are learning experiences which are designed to bring reflection and focus to a whole course of study while, at the same time, leading students toward their entry into a new world of work (Humphrey, Brown, & Benson, 2005). The capstone experience described in this paper runs as a conference, called the Stepping Out Conference. The conference is delivered as one unit and is mandatory for all fourth year pre-service teachers. Participation in a capstone unit is an effective way for students to begin thinking of themselves as teaching professionals rather than as continuing students. Students engage in the assessment as part of their capstone experience. The assessment is designed to measure students’ knowledge and skills as they relate to ‘authentic’ real life situations (Darling-Hammond, 1991). This paper details pre-service teachers’ experiences of authentic learning through their participation in a capstone unit.
Resumo:
This paper reports on the results of a project aimed at creating a research-informed, pedagogically reliable, technology-enhanced learning and teaching environment that would foster engagement with learning. A first-year mathematics for engineering unit offered at a large, metropolitan Australian university provides the context for this research. As part of the project, the unit was redesigned using a framework that employed flexible, modular, connected e-learning and teaching experiences. The researchers, interested in an ecological perspective on educational processes, grounded the redesign principles in probabilistic learning design (Kirschner et al., 2004). The effectiveness of the redesigned environment was assessed through the lens of the notion of affordance (Gibson, 1977,1979, Greeno, 1994, Good, 2007). A qualitative analysis of the questionnaire distributed to students at the end of the teaching period provided insight into factors impacting on the successful creation of an environment that encourages complex, multidimensional and multilayered interactions conducive to learning.
Resumo:
We report here the genome sequences of two alphabaculoviruses of Helicoverpa spp. from Australia: AC53, used in the biopesticides ViVUS and ViVUS Max, and H25EA1, used in in vitro production studies.
Resumo:
Objective Ankylosing spondylitis (AS) is a highly heritable common inflammatory arthritis that targets the spine and sacroiliac joints of the pelvis, causing pain and stiffness and leading eventually to joint fusion. Although previous studies have shown a strong association of IL23R with AS in white Europeans, similar studies in East Asian populations have shown no association with common variants of IL23R, suggesting either that IL23R variants have no role or that rare genetic variants contribute. The present study was undertaken to screen IL23R to identify rare variants associated with AS in Han Chinese. Methods A 170-kb region containing IL23R and its flanking regions was sequenced in 50 patients with AS and 50 ethnically matched healthy control subjects from a Han Chinese population. In addition, the 30-kb region of peak association in white Europeans was sequenced in 650 patients with AS and 1,300 healthy controls. Validation genotyping was undertaken in 846 patients with AS and 1,308 healthy controls. Results We identified 1,047 variants, of which 729 were not found in the dbSNP genomic build 130. Several potentially functional rare variants in IL23R were identified, including one nonsynonomous single-nucleotide polymorphism (nsSNP), Gly149Arg (position 67421184 GA on chromosome 1). Validation genotyping showed that the Gly149Arg variant was associated with AS (odds ratio 0.61, P = 0.0054). Conclusion This is the first study to implicate rare IL23R variants in the pathogenesis of AS. The results identified a low-frequency nsSNP with predicted loss-of-function effects that was protectively associated with AS in Han Chinese, suggesting that decreased function of the interleukin-23 (IL-23) receptor protects against AS. These findings further support the notion that IL-23 signaling has an important role in the pathogenesis of AS.
Resumo:
The two-dimensional coordination polymeric structures of the hydrated potassium and rubidium salts of (3,5-dichlorophenoxy)acetic acid, (3,5-D) namely, poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]potassium, [K2(C8H5Cl2O3)2 (H2O)]n (I) and poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]dirubidium] [Rb2(C8H5Cl2O3)2 (H2O)]n (II), respectively have been determined and are described. The two compounds are isotypic and the polymer is based on centrosymmetric dinuclear bridged complex units. The irregular six-coordination about the metal centres comprises a bridging water molecule lying on a twofold rotation axis, the phenoxy O-atom donor and and a triple bridging carboxylate O-atom of the oxoacetate side chain of the 3,5-D ligand in a bidentate chelate mode, the second carboxy O-donor, also bridging. The K-O and Rb-O bond-length ranges are 2.7238(15)--2.9459(14) and 2.832(2)--3.050(2) \%A respectively and the K...K and Rb...Rb separations in the dinuclear unit are 4.0214(7) and 4.1289(6) \%A, respectively. Within the two-dimensional layers which lie parallel to (100), the coordinated water molecule forms an O---H...O hydrogen bond to the single bridging carboxylate O atom.
Resumo:
The paper presents an improved Phase-Locked Loop (PLL) for measuring the fundamental frequency and selective harmonic content of a distorted signal. This information can be used by grid interfaced devices and harmonic compensators. The single-phase structure is based on the Synchronous Reference Frame (SRF) PLL. The proposed PLL needs only a limited number of harmonic stages by incorporating Moving Average Filters (MAF) for eliminating the undesired harmonic content at each stage. The frequency dependency of MAF in effective filtering of undesired harmonics is also dealt with by a proposed method for adaptation to frequency variations of input signal. The method is suitable for high sampling rates and a wide frequency measurement range. Furthermore, an extended model of this structure is proposed which includes the response to both the frequency and phase angle variations. The proposed algorithm is simulated and verified using Hardware-in-the-Loop (HIL) testing.