363 resultados para Privacy.
Resumo:
Technology is increasingly infiltrating all aspects of our lives and the rapid uptake of devices that live near, on or in our bodies are facilitating radical new ways of working, relating and socialising. This distribution of technology into the very fabric of our everyday life creates new possibilities, but also raises questions regarding our future relationship with data and the quantified self. By embedding technology into the fabric of our clothes and accessories, it becomes ‘wearable’. Such ‘wearables’ enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis. While the rapid uptake of wearables may offer unique and innovative opportunities, there are also concerns surrounding the high levels of data sharing that come as a consequence of these technologies. As more ‘smart’ devices connect to the Internet, and as technology becomes increasingly available (e.g. via Wi-Fi, Bluetooth), more products, artefacts and things are becoming interconnected. This digital connection of devices is called The ‘Internet of Things’ (IoT). IoT is spreading rapidly, with many traditionally non-online devices becoming increasingly connected; products such as mobile phones, fridges, pedometers, coffee machines, video cameras, cars and clothing. The IoT is growing at a rapid rate with estimates indicating that by 2020 there will be over 25 billion connected things globally. As the number of devices connected to the Internet increases, so too does the amount of data collected and type of information that is stored and potentially shared. The ability to collect massive amounts of data - known as ‘big data’ - can be used to better understand and predict behaviours across all areas of research from societal and economic to environmental and biological. With this kind of information at our disposal, we have a more powerful lens with which to perceive the world, and the resulting insights can be used to design more appropriate products, services and systems. It can however, also be used as a method of surveillance, suppression and coercion by governments or large organisations. This is becoming particularly apparent in advertising that targets audiences based on the individual preferences revealed by the data collected from social media and online devices such as GPS systems or pedometers. This type of technology also provides fertile ground for public debates around future fashion, identity and broader social issues such as culture, politics and the environment. The potential implications of these type of technological interactions via wearables, through and with the IoT, have never been more real or more accessible. But, as highlighted, this interconnectedness also brings with it complex technical, ethical and moral challenges. Data security and the protection of privacy and personal information will become ever more present in current and future ethical and moral debates of the 21st century. This type of technology is also a stepping-stone to a future that includes implantable technology, biotechnologies, interspecies communication and augmented humans (cyborgs). Technologies that live symbiotically and perpetually in our bodies, the built environment and the natural environment are no longer the stuff of science fiction; it is in fact a reality. So, where next?... The works exhibited in Wear Next_ provide a snapshot into the broad spectrum of wearables in design and in development internationally. This exhibition has been curated to serve as a platform for enhanced broader debate around future technology, our mediated future-selves and the evolution of human interactions. As you explore the exhibition, may we ask that you pause and think to yourself, what might we... Wear Next_? WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1
Resumo:
Deep packet inspection is a technology which enables the examination of the content of information packets being sent over the Internet. The Internet was originally set up using “end-to-end connectivity” as part of its design, allowing nodes of the network to send packets to all other nodes of the network, without requiring intermediate network elements to maintain status information about the transmission. In this way, the Internet was created as a “dumb” network, with “intelligent” devices (such as personal computers) at the end or “last mile” of the network. The dumb network does not interfere with an application's operation, nor is it sensitive to the needs of an application, and as such it treats all information sent over it as (more or less) equal. Yet, deep packet inspection allows the examination of packets at places on the network which are not endpoints, In practice, this permits entities such as Internet service providers (ISPs) or governments to observe the content of the information being sent, and perhaps even manipulate it. Indeed, the existence and implementation of deep packet inspection may challenge profoundly the egalitarian and open character of the Internet. This paper will firstly elaborate on what deep packet inspection is and how it works from a technological perspective, before going on to examine how it is being used in practice by governments and corporations. Legal problems have already been created by the use of deep packet inspection, which involve fundamental rights (especially of Internet users), such as freedom of expression and privacy, as well as more economic concerns, such as competition and copyright. These issues will be considered, and an assessment of the conformity of the use of deep packet inspection with law will be made. There will be a concentration on the use of deep packet inspection in European and North American jurisdictions, where it has already provoked debate, particularly in the context of discussions on net neutrality. This paper will also incorporate a more fundamental assessment of the values that are desirable for the Internet to respect and exhibit (such as openness, equality and neutrality), before concluding with the formulation of a legal and regulatory response to the use of this technology, in accordance with these values.
Resumo:
This exploratory article examines the phenomenon of the ‘Quantified Self’—until recently, a subculture of enthusiasts who aim to discover knowledge about themselves and their bodies through self-tracking, usually using wearable devices to do so—and its implications for laws concerned with regulating and protecting health information. Quantified Self techniques and the ‘wearable devices’ and software that facilitate them—in which large transnational technology corporations are now involved—often involve the gathering of what would be considered ‘health information’ according to legal definitions, yet may occur outside the provision of traditional health services (including ‘e-health’) and the regulatory frameworks that govern them. This article explores the legal and regulatory framework for self-quantified health information and wearable devices in Australia and determines the extent to which this framework addresses privacy and other concerns that these techniques engender, along with suggestions for reform.