543 resultados para Potential materials
Resumo:
The Australian sugar industry processes approximately 35 million tonnes of sugarcane per year from 400 000 hectares of land. Sugar remains the principal revenue stream from sugarcane in Australia with less than 60 ML/y of fuel ethanol produced from final molasses at present. Modelling has been undertaken to estimate the potential ethanol production from the Australian sugar industry for integrated facilities producing both sugar and ethanol from the entire sugarcane resource. Although research aimed at developing commercial processes is ongoing, the use of a proportion of the bagasse and trash for ethanol production, in addition to juice and molasses fermentation, would allow significant increases in the scale of ethanol production from sugarcane in Australia, increasing total industry revenues while maintaining energy self sufficiency.
Resumo:
Science is often considered as one of the cornerstones of human advancement. Despite its importance in our society, science as a subject in schools appears to be losing ground. Lack of relevance, the nature of the curriculum and the pedagogical approach to teaching are some of the reasons which researchers believe are causing a “swing” away from science. This paper will argue for the effectiveness of simple science demonstrations as a feasible pedagogical option with a high task value and which has the potential to reengage and reinvigorate student interest in the subject. This paper describes a case study (N = 25) in which the Integrative problem based learning model for science was implemented in a year nine science class. The study was conducted at a secondary school in Australia. Teacher demonstrations were situated in classroom activities in a “Why is it so?” problem/question format. Qualitative data gathered from students demonstrated a number of benefits of this approach. This paper then explores ways in which Web 2.0 technologies could be incorporated to enhance the value of science demonstrations
Resumo:
This book provides a comprehensive analysis of the practical and theoretical issues encountered in Australian civil procedure, including alternative dispute resolution. Each chapter features in-depth questions and notes together with lists of further reading to aid understanding of the issue. It also examines and discusses each substantive and procedural step in the trial process. Topics include jurisdiction of a court to consider a matter, alternative dispute resolution. limitations of actions, commencing proceedings, pleading, gathering evidence, trial and appeal, costs and practice directions. Each of the state, territory and federal procedures is covered.
Resumo:
In this paper, we examine the lawfulness of a proposal to provide elective ventilation to incompetent patients who are potential organ donors. Under the current legal framework, this depends on whether the best interests test could be satisfied. It might be argued that, because the Mental Capacity Act 2005 (UK) (and the common law) makes it clear that the best interests test is not confined to the patient's clinical interests, but extends to include the individual's own values, wishes and beliefs, the proposal will be in the patient's best interests. We reject this claim. We argue that, as things currently stand, the proposal could not lawfully be justified as a blanket proposition by reference to the best interests test. Accordingly, a modification of the law would be necessary to render the proposal lawful. We conclude with a suggestion about how that could be achieved.
Resumo:
ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.
Resumo:
The microstructure of YBa2Cu3O7-delta (Y-123) materials partially-melted in air and quenched from the temperature range 900-1100 degrees C, has been characterized using a combination of X-ray diffractometry, optical microscopy, scanning electron microscopy, electron microprobe analyses, transmission electron microscopy and energy and wave dispersive X-ray spectrometries. The microstructural studies reveal significant changes in the character of the quenched partial-melt as a function of temperature and time before quenching. BaCu2O2 and BaCuO2 are found to co-exist in stoichiometric samples quenched from the temperature range 920-960 degrees C. Under suitable cooling conditions, large pockets of melt cristallize as BaCuO2 with an exsolution of BaCu2O2 in the form of thin plates (approximate to 50-100 nm thick) along facets. Y2BaCuO5 (Y-211) additions are associated with the formation of BaCu2O2 at 1100 degrees C. Preliminary results on the effects of PtO2 and CeO2 additions to Y-123 (and Y-123 with Y-211 additions) show that these enhace the formation of BaCu2O2 at the melting temperature of 1100 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The microstructure of YBa2Cu3O7-δ (YBCO) materials, melt-textured in air and quenched from the temperature range 900-990°C, has been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive x-ray spectrometry. BaCu2O2 and BaCuO2 were found to coexist in samples quenched from the temperature range 920-960°C. The formation of BaCu2O2 preceded the formation of YBCO. Once the YBCO had formed, BaCu2O2 was present at the solidification front filling the space between nearly parallel platelets of YBCO. Large Y2BaCuO5 particles at the solidification front appeared divided into smaller ones as a result of their dissolution in the liquid that quenched as BaCu2O2.
Resumo:
Conspicuity limitations make bicycling at night dangerous. This experiment quantified bicyclists’ estimates of the distance at which approaching drivers would first recognize them. Twenty five participants (including 13 bicyclists who rode at least once per week, and 12 who rode once per month or less) cycled in place on a closed-road circuit at night-time and indicated when they were confident that an approaching driver would first recognize that a bicyclist was present. Participants wore black clothing alone or together with a fluorescent bicycling vest, a fluorescent bicycling vest with additional retroreflective tape, or the fluorescent retroreflective vest plus ankle and knee reflectors in a modified ‘biomotion’ configuration. The bicycle had a light mounted on the handlebars which was either static, flashing or off. Participants judged that black clothing made them least visible, retroreflective strips on the legs in addition to a retroreflective vest made them most visible and that adding retroreflective materials to a fluorescent vest provides no conspicuity benefits. Flashing bicycle lights were associated with higher conspicuity than static lights. Additionally, occasional bicyclists judged themselves to be more visible than did frequent bicyclists. Overall, bicyclists overestimated their conspicuity compared to previously collected recognition distances and underestimated the conspicuity benefits of retroreflective markings on their ankles and knees. Participants mistakenly judged that a fluorescent vest that did not include retroreflective material would enhance their night-time conspicuity. These findings suggest that bicyclists have dangerous misconceptions concerning the magnitude of the night-time conspicuity problem and the potential value of conspicuity treatments.
Resumo:
Chemical treatments of kaolins to produce nanocrystalline or "X-ray amorphous", stable aluminosilicates with variable - but reproducible - types of micro- and meso-porosity have been developed. These materials show cation exchange capacities and surface area values significantly higher (ranging from 10x to 100x) than kaolin and show good acid resistance to pH~3.0. The combination of these properties offers strong potential for many new applications of kaolin-derived materials in large worldwide markets such as environmental remediation and catalysis. Kaolin amorphous derivative (KAD) is well-suited to removal of many toxic metals down to ppb range from acid mine drainage. Engineering development trials of the KAD manufacturing process and the utilisation of KAD in polluted waters such as acid mine drainage indicates that scale-up from bench-scale is not a barrier to market entry.
Resumo:
This book provides a comprehensive analysis of the practical and theoretical issues encountered in Australian civil procedure. Each chapter features in-depth questions and notes together with lists of further reading to aid understanding of the issue. It also examines and discusses each substantive and procedural step in the trial process. Topics include jurisdiction of a court to consider a matter, limitations of actions, commencing proceedings, service, interlocutory proceedings, pleading, gathering evidence, trial and appeal, costs and practice directions. Each of the state, territory and federal procedures is covered.
Resumo:
This book provides a comprehensive analysis of the practical and theoretical issues encountered in Australian civil procedure, including alternative dispute resolution. Each chapter features in-depth questions and notes together with lists of further reading to aid understanding of the issue. It also examines and discusses each substantive and procedural step in the trial process. Topics include jurisdiction of a court to consider a matter, court adjudication under an adversarial system, alternative dispute resolution. limitations of actions, commencing proceedings, pleading, gathering evidence, trial and appeal, costs and enforcement. Each of the state, territory and federal procedures is covered.
Resumo:
This study investigates the potential of a Zn/Al layered double hydroxides (LHDs) as an adsorbent for the removal of iodine species from potable water (Theiss et al., 2011b). In this paper the resultant materials were characterised using powder x-ray diffraction (XRD) and thermogravimetry (TG) coupled with evolved gas mass spectrometry (EGMS) (Frost, et al, 2005, Rives, et al, 2001).
Resumo:
Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with improved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer nanocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, electrodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.