402 resultados para Order-preserving Functions
Resumo:
This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of $O(\tau+h^{r+1})$ in the $L^2$ norm, where $\tau$ and $h$ are the step sizes in time and space, respectively, and $r$ is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are $O(\tau^{1.5}+h^{r+1})$. Furthermore, two improved algorithms are constrcted, they are also unconditionally stable and convergent of order $O(\tau^2+h^{r+1})$. Numerical examples are provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones are included, which show that our numerical algorithms exhibit better performances than the known ones.
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
Increasingly, domestic violence is being treated as a child protection issue, and children affected by domestic violence are recognised as experiencing a form of child abuse. Domestic violence protection order legislation – as a key legal response to domestic violence – may offer an important legal option for the protection of children affected by domestic violence. In this article, we consider the research that establishes domestic violence as a form of child abuse, and review the provisions of State and Territory domestic violence protection order legislation to assess whether they demonstrate an adequate focus on the protection of children.
Resumo:
Weblogs, or blogs, constitute a form and genre of online publishing that emerged in the mid-1990s as a logical consequence of the confluence of personal and professional home pages and new web publishing technologies. To overcome technological limitations, where news updates had to be manually inserted by editing the underlying HTML code, the early content-management systems in the second half of the 1990s built on server-side database technology to dynamically generate web pages; this enabled more convenient and more frequent content updates. Weblogs utilised such technologies to provide an up-to-date news feed, presenting individual news items in reverse chronological order. Most blogging platforms provide commenting functions that enable readers to respond to and discuss individual blog posts...
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
Mode indicator functions (MIFs) are used in modal testing and analysis as a means of identifying modes of vibration, often as a precursor to modal parameter estimation. Various methods have been developed since the MIF was introduced four decades ago. These methods are quite useful in assisting the analyst to identify genuine modes and, in the case of the complex mode indicator function, have even been developed into modal parameter estimation techniques. Although the various MIFs are able to indicate the existence of a mode, they do not provide the analyst with any descriptive information about the mode. This paper uses the simple summation type of MIF to develop five averaged and normalised MIFs that will provide the analyst with enough information to identify whether a mode is longitudinal, vertical, lateral or torsional. The first three functions, termed directional MIFs, have been noted in the literature in one form or another; however, this paper introduces a new twist on the MIF by introducing two MIFs, termed torsional MIFs, that can be used by the analyst to identify torsional modes and, moreover, can assist in determining whether the mode is of a pure torsion or sway type (i.e., having a rigid cross-section) or a distorted twisting type. The directional and torsional MIFs are tested on a finite element model based simulation of an experimental modal test using an impact hammer. Results indicate that the directional and torsional MIFs are indeed useful in assisting the analyst to identify whether a mode is longitudinal, vertical, lateral, sway, or torsion.
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Purpose This paper investigates the interrelationships between knowledge integration (KI), product innovation and capability development to enhance our understanding of how firms can develop capability at the firm level, which in turn enhances their performance. One of the critical underlying mechanisms for capability building identified in the literature is the role of knowledge integration, which operates within product innovation projects and contributes to dynamic capability development. Therefore, the main research question is “how does the integration of knowledge across product innovation projects lead to the development of capability?” Design/methodology/approach We adopted a case-based approach and investigated the case of a successful firm that was able to sustain its performance through a series of product innovation projects. In particular this research focused on the role of KI and firm-level capability development over the course of four projects, during which the firm successfully managed the transformation of its product base and renewal of its competitive advantage. For this purpose an in-depth case study of capability development was undertaken at the Iran Khodro Company (IKCO), the key player in the Iranian auto industry transformation. Originality/value This research revealed that along with changes at each level of product architecture “design knowledge” and “design capability” have been developed at the same level of product architecture, leading to capability development at that level. It can be argued that along the step by step maturation of radical innovation across the four case projects, architectural knowledge and capability have been developed at the case company, resulting in the gradual emergence of a modular product and capability architecture across different levels of product architecture. Such findings basically add to extensive emphasis in the literature on the interrelationship of the concept of modularity with knowledge management and capability development. Practical implications Findings of this study indicate that firms manage their knowledge in accordance with the level of specialization in knowledge and capability. Furthermore, firms design appropriate knowledge integration mechanisms within and among functions in order dynamically align knowledge processes at different levels of the product architecture. Accordingly, the outcomes of this study may guide practitioners in managing their knowledge processes, through dynamically employing knowledge integration modes step-by-step and from the part level to the architectural level of product architecture across a sequence of product innovation projects to encourage learning and radical innovation.
Resumo:
As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.